Induced Myocardial Infarction Using Ligation of the Left Anterior Descending Coronary Artery Major Diagonal Branch: Development of an Ovine Model

Shahram Rabbani, DVM*, Hossein Ahmadi, MD, Ehsan Fayazzadeh, MD, Mohammad Sahebjam, MD, Mohammad Ali Boroumand, MD, Maryam Sotudeh, MD, Mehdi Nasiri, DVSc

Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.

Received 25 May 2006; Accepted 3 July 2006

Abstract

Background: We report experimental myocardial infarction by occluding coronary arteries in ovine models.

Methods: Twelve ewes were included in the study. After the chest was opened by left lateral thoracotomy incision, the second diagonal branch of the left anterior descending coronary artery was ligated at a point approximately 40% distant from its base. Prophylactic antiarrhythmics were administered. Animals were mechanically ventilated during surgery and stayed in the ICU for 24h afterwards. Experiments were then evaluated by echocardiographic, electrocardiographic, hemodynamic, serologic and morphologic investigations. Echocardiographic measurements were repeated after two months and animals were then sacrificed for postmortem cardiac examinations.

Results: All animals survived the surgical procedure. Cyanotic discoloration and hypokinesia in the cardiac tissue in an area of 3×4 cm plus ST-segment elevations was detected immediately after vessel ligation. Moreover, there were pathologic Q-waves 2 months later. Echocardiographic evaluations revealed an average of 22% relative decrease in cardiac ejection fraction. Wall motion analysis demonstrated anteroapical hypokinesia and akinesia in all animals one day and two months after operation. Thin walled infarcted areas with tissue fibrosis were evident in pathologic investigations two months after surgery.

Conclusion: In conclusion, we developed a practical and safe method of producing myocardial infarction in large animal models.

Keywords: Myocardial infarction • Animal models • Sheep • Coronary arteries

Introduction

Today, acute myocardial infarction (MI) is the major cause of mortality in many countries. Using large animal models for cardiovascular research has recently become an issue of interest mainly due to their similarity to human anatomic and physiopathologic characteristics, despite a few drawbacks like substantial resources for housing and care.1-7 Coronary artery ligation to induce myocardial infarction in these models is now considered as a widely used and an attractive method for experimental research because of its clinical relevance.7-12 However, there are only few published studies describing
the procedure in detail. Here in the present study, we report a
detailed guide for induction of MI in ovine models by ligation of
the main diagonal branch of the left anterior descending (LAD) coronary artery (namely homonymous artery in sheep)
with echocardiographic, electrocardiographic, hemodynamic,
serologic and morphologic evaluations.

Methods

Animal care and selection

The study was approved by the ethical committee of
Tehran University of Medical Sciences. All experiments
received humane care in accordance with the “Guide for the
Care and Use of Laboratory Animals” published by the US
National Institute of Health (NIH Publication NO. 85-23,
revised 1996). Twelve Iranian ewes weighing 50±10 kg were
used. During the study, the animals were held in metabolic
cages, had free access to water, and were fed with a mixed
diet of hay and sheep pellets. All animals were housed for
one week in the animal house for adaptation. They were
examined by a veterinarian and a cardiologist both clinically
and echocardiographically and excluded from the study if
any serious morbidity was detected.

Surgical preparation

The sheep were NPO (nil per os) 24h prior to surgery.
Animals received intramuscular xylazine, 0.2 mg/kg, to
become sedated for shaving and instrumentation. Body
hair was Shortened and then shaved in the chest area. The
saphenous vein was cannulated with a #20 gauge (pink)
intravenous catheter. A central venous cannula was placed in
the jugular vein using the Seldinger technique. Intravenous
infusion of lactated Ringer’s solution (20 cc/kg in 1h) was
delivered before anesthesia which was maintained at a rate
of 10 cc/kg per hour. The urethra was catheterized by a #10
Foley catheter connected to a urine bag. A pulse oximeter
ducer was connected to the ear to monitor O2 saturation.
Five electrocardiogram (ECG) electrodes were connected
to the extremities and on the chest. Anesthesia was induced
by intravenous injection of sodium thiopental, 5 mg/kg,
and maintained by halothane (2.0- 3.0 vol. %) in oxygen.
Animals were then immediately intubated by a 7.5mm
endotracheal tube and mechanically ventilated (Draeger
Ventilog3®) with 100% O2 at a respiratory rate of 12-14/min,
in-to expiratory cycle ratio of 1:1 and tidal volume of 10 mL/
kg. Gastric decompression was accomplished by insertion
of an orogastric tube. An anticholinergic (atropine, 2 mg) to
prevent hypersalivation and an antibiotic (cefazolin, 1g) for
prophylaxis were administered intravenously upon induction
of anesthesia. Prophylactic antibiotic was repeated 8 and 16
hours after surgery.

Surgical procedure

After surgical prep/drape, a 15-20cm long left lateral
thoracotomy incision was performed through the 4th
intercostal space. After the pericardium was opened, the
coronary anatomy was inspected. The main (i.e., second)
diagonal branch of left anterior descending coronary artery
was ligated using a curved round needle and 6-0 Prolene™
suture at a point approximately 40% distant from its base.
After cardiac tissue cyanosis and ventricular hypokinesia
plus ST- segment changes on electrocardiogram became
evident, the thoracotomy was closed (pericardium with 5-0
Prolene™, muscles and skin with 2-0 Vicryl™ sutures) and
a chest tube was placed. For antiarrhythmic prophylaxis,
lidocaine was given as an intravenous bolus dose just before
ligation of the diagonal branch (2mg/kg) & 15-20 minutes
there after (1mg/kg).

Post-operative analgesia was provided by 50 mg pethidine
given intramuscularly. Cases stayed at animal ICU for 24h
after surgery and then were discharged if there were no peri-
operational morbidities.

Evaluation

The experiments were evaluated by echocardiographic,
electrocardiographic, hemodynamic, serologic, gross
macroscopic and microscopic histopathologic parameters.
Cardiac function was evaluated pre-operation and on the
1st day post-operation using trans-thoracic color Doppler
ultrasonography (Toshiba model SSA380A); left ventricular
end-diastolic dimension (LVEDD), left ventricular end-
systolic dimension (LVESD), fractional shortening (FS) and
ejection fraction (EF) were measured. FS was defined as
LVEDD-LVESD/LVEDD and EF was defined as LVEDD2-
LVESD2/LVEDD2. Electrocardiograms were continuously
displayed on a monitoring system (SPACELAB™), and
intermittently obtained on a paper chart record. By peripheral
cannulation of an artery in the ear, systemic arterial
pressure was continuously monitored. The left jugular
vein was cannulated with a heparin coated catheter (Arrow
International, Inc.) and the central venous pressure (CVP)
was measured. Measurements were recorded pre-ligation
and one hour post-infarction. Serologic examinations
were performed by measuring serum specific proteins
CTnI, and CK-MB before operation and 24-48h after it.
Successful ligation was confirmed by myocardial cyanosis
and hypokinesia with bulging and ST- segment changes
in the ECG. After a predetermined 2-month interval, the
echocardiographic and electrocardiographic evaluations
were repeated and samples were then euthanized with an
overdose of sodium thiopental (35mg/kg) for postmortem
autopsy of their hearts. Heart specimens were examined for
any infarct areas, aneurysms, etc. and then sliced into cross
sections for Masson’s tri-chrome staining and microscopic
evaluations.
Statistical analysis

Data analysis was performed by SPSS® software version 12.0. Each variable was evaluated by Student paired t test. P values <0.05 were considered statistically significant. All data are presented as mean± standard error of mean (SEM) unless otherwise specified.

Results

All surgeries were performed without any major morbidity or mortality. The anatomy of coronary vasculature was readily recognized. Ischemic bluish discoloration and hypokinesia in the cardiac tissue in an area of 3×4 cm was easily speculated immediately after coronary artery ligation (figure 1).

Figure 1. The diagonal branch (diag.; arrow) was ligated at a point 40% distant from its base. Note the ischemic bluish discoloration at an area of 3×4 cm.

Figure 2. Electrocardiography revealed ST elevation shortly after vessel ligation (A), and pathologic Q waves 2 months later (B).

More over, acute ST-segment elevations were apparent shortly after vessel ligation (figure 2.A) with pathologic Q-waves observed two months later (figure 2.B).

Echocardiographic evaluations showed an average of ~22% relative decrease in EF with P values<0.001 (table 1). Wall motion analysis demonstrated variable degrees of anteroapical hypokinesia and akinesia in all animals one day and two months after operation. There was also a finding of mural dyskinesia in one specimen at 2-month post operational evaluation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preligation</th>
<th>24h after ligation</th>
<th>2 months after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDD(mm)</td>
<td>47.71± 6.40</td>
<td>59.06±6.54</td>
<td>50.82±8.26</td>
</tr>
<tr>
<td>LVESD(mm)</td>
<td>13.14±1.48</td>
<td>29.06±3.98” ”</td>
<td>21.85±4.19” ”</td>
</tr>
<tr>
<td>FS%</td>
<td>40±1</td>
<td>27±1 ” ”</td>
<td>31±3 ” ”</td>
</tr>
<tr>
<td>EF(%)</td>
<td>71.64±1.52</td>
<td>49.67±2.35” ”</td>
<td>58.75±3.94” ”</td>
</tr>
</tbody>
</table>

LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; FS, fractional shortening; EF, ejection fraction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preligation</th>
<th>1h after ligation</th>
<th>2 months after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR(beats/min)</td>
<td>78.7± 14.7</td>
<td>85.2±15.9</td>
<td>72.8±16.2</td>
</tr>
<tr>
<td>CVP(mm Hg)</td>
<td>4.3±1.3</td>
<td>5.6±0.8” ”</td>
<td>6.2±1.2” ”</td>
</tr>
<tr>
<td>SAP(mm Hg)</td>
<td>56.0±5.1</td>
<td>49.1±6.7</td>
<td>51.2±6.4</td>
</tr>
</tbody>
</table>

HR, heart rate; CVP, central venous pressure; SAP, systemic arterial pressure

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Preligation</th>
<th>24-28h after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTnI (ng/ml)</td>
<td><0.1</td>
<td>7.19</td>
</tr>
<tr>
<td>CK-MB (IU/L)</td>
<td><35</td>
<td>1498</td>
</tr>
</tbody>
</table>

CTnI, cardiac Troponin I; CK-MB, Creatine Kinase isoenzyme MB

Hemodynamic measurements revealed statistically significant rise in CVP (P<0.05) one hour after ligation (table 2).

Table 1. Echocardiographic variables (n=12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preligation</th>
<th>1h after ligation</th>
<th>2 months after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDD(mm)</td>
<td>47.71± 6.40</td>
<td>59.06±6.54</td>
<td>50.82±8.26</td>
</tr>
<tr>
<td>LVESD(mm)</td>
<td>13.14±1.48</td>
<td>29.06±3.98” ”</td>
<td>21.85±4.19” ”</td>
</tr>
<tr>
<td>FS%</td>
<td>40±1</td>
<td>27±1 ” ”</td>
<td>31±3 ” ”</td>
</tr>
<tr>
<td>EF(%)</td>
<td>71.64±1.52</td>
<td>49.67±2.35” ”</td>
<td>58.75±3.94” ”</td>
</tr>
</tbody>
</table>

LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; FS, fractional shortening; EF, ejection fraction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preligation</th>
<th>1h after ligation</th>
<th>2 months after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR(beats/min)</td>
<td>78.7± 14.7</td>
<td>85.2±15.9</td>
<td>72.8±16.2</td>
</tr>
<tr>
<td>CVP(mm Hg)</td>
<td>4.3±1.3</td>
<td>5.6±0.8” ”</td>
<td>6.2±1.2” ”</td>
</tr>
<tr>
<td>SAP(mm Hg)</td>
<td>56.0±5.1</td>
<td>49.1±6.7</td>
<td>51.2±6.4</td>
</tr>
</tbody>
</table>

HR, heart rate; CVP, central venous pressure; SAP, systemic arterial pressure

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Preligation</th>
<th>24-28h after ligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTnI (ng/ml)</td>
<td><0.1</td>
<td>7.19</td>
</tr>
<tr>
<td>CK-MB (IU/L)</td>
<td><35</td>
<td>1498</td>
</tr>
</tbody>
</table>

CTnI, cardiac Troponin I; CK-MB, Creatine Kinase isoenzyme MB

There was also a meaningful rise in serum cardiac specific proteins CTnI and CK-MB 24-48h after surgery (table 3).

Post-mortem pathologic examinations two months after surgery showed thin walled infarcted areas (figures 3, 4) with tissue fibrosis (figure 5).
Coronary artery occlusion and hence inducing myocardial infarction in large animal models is a practical method for examining novel therapeutic protocols in cardiovascular research. How ever, these animals such as sheep lack good coronary collateral circulation which may lead to a remarkable incidence of fatal arrhythmias due to myocardial ischemia during such procedures.6,7

In the studies done by MT Rademaker, et al.12, RWJ Millner, et al.3 and LJ Markovitz, et al.4, the LAD artery was ligated at a point approximately 40% of the distance from the apex to the base of the heart with the simultaneous ligation of the diagonal vessel at a point that was nearly in line with the point at which the LAD artery was ligated. Animals in our pilot experience and also in experiments accomplished by WG Kim et al.7, died during such operation as of intractable arrhythmias following myocardial ischemia. WG Kim et al.7,11 performed a modified method with sequential ligation of the LAD artery and its diagonal branch; i.e., they ligated the LAD artery first and then its diagonal branch one hour later. We also failed to perform this method successfully in three cases, but ligation of the major diagonal branch of the LAD artery proved to be safe and yet practical for inducing MI documented by paraclinical investigations.

In our pilot studies, there were 2 more animals in which antiarrhythmic prophylaxis with lidocaine was not administered. Both developed intractable ventricular fibrillation (VF) and expired despite intensive cardiopulmonary resuscitation. There were also 3 pilot experiments in which ligation of LAD arteries was performed at a level 40% distant from its base. They died due to fatal arrhythmias as well.

In conclusion, inducing myocardial infarction by coronary artery occlusion in animal experiments is a practical method for cardiovascular research examining therapeutic protocols for the Ischemic heart. How ever, development of fatal intractable arrhythmias is much more common in larger animals like sheep which have a similar anatomy to human circulatory system. We introduced a practical, reliable, and yet safe ovine model of inducing myocardial infarction in this study.

Acknowledgment

This study was performed in and technically supported by Tehran Heart Center- Tehran University of Medical Sciences.
Induced Myocardial Infarction Using Ligation ...

References