An Insight into Laser Revascularization of the Heart

Mahmood Mirhoseini, MD, FACS, FACC*, Mary Cayton RN, BSN, PA,
Suhas Shelgikar MD, FACC

Medical college of Wisconsin, Milwaukee, Wisconsin, U. S. A

The notion to revascularize the ischemic myocardium from left ventricular cavity is not a new concept. The possibility was first proposed by Wearn in 1933.1 The work by mechanical means was followed by Walter, Massimo and later on by Sen.2-5 The fundamental concept was based on two factors; first a reptilian heart model and second the heart muscle structure which possesses a spongy character, en-meshed by sinusoids bathing the myocytes. The Vineberg operation6 consisted of the insertion of a mammary artery into the heart muscle to establish a connection between the small capillaries (angiogenesis) and heart circulation in hopes of alleviating angina in ischemic heart disease.

In reptile hearts, the coronary arteries play a minor role in the perfusion of myocardium. Their circulation is supplied by canals from left and right ventricular cavities. So, ligation of coronary branches does not produce myocardial infarction (Figure 1-3).

The mechanical recanalization had a serious drawback. These channels were closed due to initial trauma, causing inflammatory reaction cell infiltration, fibrosis and eventual closure of the channels.

*Corresponding Author: Mahmood Mirhoseini, Professoe of Cardiac Surgery, Tehran Heart Center, Experimental Research unit, North Kargar Street, Tehran, Iran. 14113138. Tel: +98 21 88029257. Fax: +98 21 88029256. E-mail: research@tehranheartcenter.org.
The discovery of laser (light Amplification by Stimulated Emission of Radiation) in early 1960 by Nobel Laureate, Dr Theodor Maimon inspired our team to examine the hypothesis of recanalizing the ischemic myocardium with CO2 laser (Figure 4).

Our primary reason for selecting this wave length (10.6 micron) was because its excellent absorption by the water content of myocardium (80% of myocardium is water by weight). We were also encouraged because CO2 laser could be made to deliver pulses of short duration in order of milliseconds and of very high energy density. Since the thermal relaxation time of myocardium is about 30 milliseconds and pulses of this order can be made, the thermal injury was very minimal and almost non existent (Mass conversion to energy photons and water vapor)

\[E=mc^2 \]

Consequently the channels would stay open and perfuse the myocardium.

This high powerful laser was loaned to us by scientist Dr. Polayni from the American optical company Boston, Mass. USA (Figure 5).

With the help of my wife Mary Cayton, we worked in the laboratory (VA Center, Medical College of Wisconsin Milwaukee, Wis. USA), at nights, weekends and on holidays for over 24 years. The expenses were paid by my own practice of cardiovascular surgery and some by the philanthropic foundation of St. Lukes Medical Center Milwaukee, USA.

The theory was proven to be correct and we published our work in 1970 in the Journal of Micro Surgery. This was a carefully randomized study on animals. The patency of the channels and their protection of ischemic myocardium were demonstrated in these animals after ligation of a major coronary artery.

As a matter of fact, we had one animal (a dog) in which all coronaries were ligated and she was lived for 2 years, kept in a kennel in rural area of Wisconsin.

Unfortunately, she died by being hit by a truck while chasing the vehicle. Since bringing this large laser equipment to an operating room for clinical trial was impossible, we designed a smaller CO2 laser and experimented on cold cardioplegic heart.

Patency of these canals was also proven before clinical trial was allowed by Institutional Review Board Committee of St. Lukes medical center.

The initial trial was on 12 patients in combination with CABG.

The laser channels were made in areas that bypass was not possible, either due to total occlusion of the vessel or severe diffuse disease of the coronary.

Ischemic area was demonstrated prior to surgery by nuclear scan. Channels were made (one channel per each square centimeter). One of the pioneering patients expired 5 years later due to metastatic cancer of the Lung.

Patency of laser channels were demonstrated by tissue microscopy. These channels were covered by endothelium which proved to be true endothelium by DNA immunoperoxidose studies (Figure 7).
In some cases, ventriculogram showed patency of the channels (Figure 8).

The work was published in Annals of Thoracic Surgery in 1984, and later on in Journal of clinical laser medicine and surgery. Our laser laboratory noted that the laser pulse could produce arrhythmias (ventricular tachycardia and ventricular fibrillation) if pulse hits at ST segment of ECG in animals.

Therefore we synchronized the laser pulse at P-R intervals so the pulse would arrive at up stroke of R Wave.

This has two major advantages: 1. Prevents arrhythmias and 2. Laser arrives during diastole of cardiac cycle and the energy is quickly absorbed by the water content of blood; therefore it does not travel to the other side nor does it damage the interior of the left ventricular valves and cardio tendoae.

During the last several years, numerous articles and even book chapters have been published presenting various techniques such as percutaneous, per catheter- endoscopic and electromechanical imaging. Also different lasers and different wave lengths have been applied.

The TMLR (Trans–Myocardial Laser Revascularization) has been in the Armamentarium of the surgeon.

The alleviation of angina in end-stage coronary artery disease is proven.

Randomized multicenter studies conducted under auspices of FDA proved that this technique is superior to medical treatment in this group of patients. It relieves and drops angina class from class 4 or class 3 at least two classes and quality of life is also improved.16

The technique is used either as sole therapy or combined procedure with coronary bypass surgery.

One should keep in mind that the commercial lasers which are available do not meet the original standard on patency of the channels.

The channels usually close in a few weeks. The effect of laser at relieving pain is attributed to angiogenesis triggered by the laser channels.

The alleviation of angina is long lasting and some of our patients are 20 years past surgery. Therefore, placebo effect can not be considered. As a matter of fact, perfusion of myocardium in many patients has improved and demonstrated by nuclear scan and MRI; ejection fraction in a few patients has markedly increased.16

Since the commercial parties have rushed the production of this product and its presentation to the market without my personal approval, one could state with honesty that the final chapter in TMLR is not closed.

The goal should be to produce a laser like the first laser, to avoid thermal injury to myocardium in order to assure patency of laser channels and give patients the security of receiving the full-benefit of TMLR, the initial intention of this technique.

References