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Introduction 

Myocardial infarction (MI) and its principal determinant, 
coronary artery disease (CAD), are major causes of death 
and disability worldwide.1 Complex diseases arising from 
the interaction between several genetic and environmental 
factors, MI and CAD are distinguished from monogenic 
Mendelian disorders (i.e. thalassemia, hemophilia, and cystic 
fibrosis) in which mutations of a single gene are believed to 
cause the greatest part of the disease phenotype. 

Atherothrombotic diseases: The role of 
genetic risk factors

Epidemiological studies have firmly established an 
association between several environmental risk factors 
and the occurrence of CAD/MI.2-6 Smoking, dyslipidemia, 
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diabetes, obesity, little physical activity, and hypertension are 
well recognized risk factors for atherothrombosis and display 
a similar prevalence in geographical areas and populations of 
different ethnicity and levels of income, as highlighted by 
the INTERHEART study.7 Beside and independently from 
other risk factors, a positive family history, defined as at least 
one first-degree relative having developed the disease at an 
age younger than 55 years in males or 65 years in females, 
has been consistently shown to correlate with the risk of 
atherothrombosis in the frame of epidemiological studies. 
Pertaining specifically to MI, a positive family history is 
associated with a risk increase of a magnitude comparable to 
that of other established risk factors,7-9 with the risk for MI 
in the siblings of affected patients being from 2 to 11 fold 
higher than that of the general population.10-11 In addition, 
the concordance in the development of MI is higher among 
monozygous than dizygous twins.12, 13 A positive family 
history has a higher prevalence in young patients with early-
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Principles of genome-wide association 
studies 

Genome-wide association studies (GWAS) became 
possible after the publication of the International Haplotype 
Map Project (HapMap)20, 21 and the development of array-
based platforms that enable the investigation of up to one 
million variants in cases and controls of a certain disease 
(or other phenotypic traits). The HapMap was a large 
collaborative project that described the frequencies of 
genetic variants with a minor allele frequency above 5% 
in four distinct populations: Han Chinese, Japanese, Black 
African from Nigeria, and Caucasian of European ancestry 
from the USA.20, 21 

GWAS follow a multi-stage procedure:22 
1. A complex disease, with a high prevalence in the 

population (GWAS typically need thousands of 
participants) is chosen, provided there is already 
evidence for a genetic basis for the condition/disease 
object of the study. 

2. Cases and controls are recruited, possibly with bias-free 
modalities that guard against the selection of individuals 
not representative of the reference population. More 
rarely, GWAS are conducted in the frame of prospective, 
population-based cohort studies.

3. Genetic variants are then sequenced both in the cases 
and controls. Genotyping is performed using arrays that 
sequence up to one million variants across the human 
genome. 

4. Extensive quality control procedures, applied to each 
step of the study, help to control for the integrity and 
purity of DNA samples, presence of genotyping errors, 
genetic stratification of the study population, and 
reliability of the genotyping data. These procedures are 
critical to reduce type 1 errors, which are common in 
genetic association studies.

5. Statistical analysis is thereafter performed to identify 
variants associated with the disease. A variant is 
considered to be associated with a disease when 
its prevalence is significantly greater in cases than 
controls (Figure 1). Since testing for the association of 
approximately one million variants enhances the risk 
of false positive findings owing to multiple testing, 
the conventional statistical significance threshold used 
to define a true association in GWAS is p value < 5 × 
10-8 (corresponding to 0.05 after adjustment for one 
million independent tests).22 In GWAS, a small number 
of variants do reach this stringent threshold, even when 
more than 4,000 individuals are investigated. Usually, 
the first genome-wide screen allows to identify a 
number of variants that show suggestive association 
with the disease (p value < 10-4) and that subsequently 
need retesting in other cohorts to confirm or exclude 
association (replication stage). 

onset MI.14 On the whole, it is well established that genetic 
factors play an important role in the pathophysiology of MI.

Genetic association studies

A genetic variant is a DNA sequence variant that differs 
from the reference sequence of the human genome, completed 
in 2003 by the Human Genome Project.15 Genetic association 
studies compare the frequency of genetic variants, usually 
in the frame of retrospective case-control studies carried 
out in subjects with and without a disease, with the aim to 
identify associations between genetic variants and disease 
predisposition. Identifying variants associated with a given 
disease can confer pathophysiological insights (identification 
of biological pathways implicated in disease occurrence), 
improve the prediction of the risk of developing the disease 
in the future, and lead to the identification of a subset of 
diseased individuals that might benefit from a specific 
medical treatment.

Candidate gene studies are the simplest and the most 
common type of genetic association studies. The genetic 
variants investigated in these studies are selected a priori, 
on the basis of their localization in genes which encode 
proteins with a known function in a biological pathway 
that is putatively implicated in the pathophysiology of the 
disease. For instance, the frequency of variants located in 
genes implicated in lipoprotein metabolism or hemostasis is 
compared in cases with MI and in healthy controls.

Candidate gene studies conducted in the past were affected 
by several limitations. First, they were usually conducted 
in rather small case-control cohorts, with a high risk of 
false positive findings (type 1 error), so that the results of 
single studies were seldom replicated. Typically, a large 
replication study published in 2007 failed to replicate any 
of the 84 previously reported associations between genetic 
variants and CAD, in spite of an adequately powered study 
population.16 Only a handful of candidate gene studies have 
succeeded in the identification of reproducible associations. 
This is the case, for instance, for studies that established 
the association between the ε4 allele of the gene encoding 
apolipoprotein E (APOE) and Alzheimer’s disease,17, 18 
between the coagulation factor V gene polymorphism called 
factor V Leiden (an established genetic risk factor for venous 
thrombosis) and early-onset MI (Spreafico M, Peyvandi 
F, Foco L, et al. Factor V Leiden, but not prothrombin 
G20120A, is associated with premature myocardial 
infarction. Circulation 2008;118:S-956.), and between the 
haplotypes of the major histocompatiblity  complex (MHC) 
and several autoimmune diseases.19 However, candidate gene 
studies based on an a priori hypothesis have failed so far to 
unravel previously unknown disease pathways. 

Genome-Wide Association Studies in Myocardial Infarction and Coronary Artery Disease
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The first GWAS to be conducted under these modalities 
was a large case-control study by the Wellcome Trust Case-
Control Consortium (WTCCC), in which 14,000 cases 
affected by 7 among the most common complex diseases 
(CAD, arterial hypertension, rheumatoid arthritis, Crohn’s 
disease, bipolar disorder, and diabetes mellitus types I and 
II) were compared with a set of 3,000 healthy controls.23 The 
WTCCC study identified 24 genetic variants associated with 
at least one of these complex diseases and helped to clarify 
key methodological issues, setting the stage for the more 
than 400 GWAS that were to follow. These GWAS have so 
far identified more than 250 loci at which common variants 
influence the predisposition to diseases that are common 
(i.e., diabetes, autoimmune diseases, and several types of 
cancer), an achievement that by far outweighed that of the 
previous decade of genetic studies. Results are available in 
the catalogue of published GWAS prepared by the National 
Cancer Institute (NCI)-National Human Genome Research 
Institute (NHGRI).24

Figure 1. This Manhattan plot shows the statistical association between 
single nucleotide polymorphisms (SNPs) and a disease. Dots represent the 
SNPs and the bands of different tones of grey different chromosomes. In 
the figure, an association between chromosome 5 SNPs and the disease is 
presented (open circle)

The genetic variants that can be identified by GWAS 
are common variants (with at least 5% frequency in the 
population) and have a low effect size; the conferred relative 
risks, as expressed by odds ratio, usually range between 1.1 
and 1.5. These results confirm the views that the genetic 
predisposition to common diseases consists of the combined 
effect of numerous common genetic variants, each of a small 
effect size. However, it should be noted that GWAS identify 
regions of the genome (loci) rather than variants of specific 
genes. Indeed, the specific variant(s) identified by GWAS 
may simply represent the signal of one or more hidden 
variant(s) (not typed in the arrays used in GWAS). Limitations 
of GWAS need to be mentioned. First, these studies need 
very large samples of cases and controls. Second, DNA and 
data quality control procedures and statistical analysis need 
to be carried out by expert centres. Third, the overall cost 
of GWAS, ranging from hundreds of thousands to millions 
of US dollars, is prohibitive for most research groups 

worldwide. And finally, even after and in spite of all quality 
control procedures, there is still the chance that the results of 
GWAS include false-positive results, so that an independent 
replication of these results is still important even after testing 
thousands of individuals.

Results of genome-wide association 
studies in coronary artery disease/
myocardial infarction

Seven GWAS have addressed the relationship between 
CAD/MI and common genetic variants (Table 1)23, 25-30 and 
found 13 loci at which common genetic variation alters the 
predisposition for these diseases. A GWAS on the number of 
circulating eosinophil leukocyte number has also identified 
a 14th locus associated with both eosinophil numbers and MI 
(SH2B3 at chromosome12p24, p value for association with 
MI = 8.6 × 10-8).31 All MI/CAD risk variants at these loci are 
characterized by a small effect size coupled with a rather high 
frequency in the population (Table 1). Among the loci found 
by GWAS, there are genomic areas that encompass genes 
whose mutations cause familial hypercholesterolemia (LDLR 
and PCSK9).29 The fact that these hypothesis-free scans of the 
human genome were able to track diseases pathways that are 
known to have an established role in the pathophysiology of 
MI/CAD confirms the reliability and the biologic plausibility 
of the results of GWAS. The reliability of GWAS is further 
highlighted by the fact that all studies have identified a locus 
on chromosome 9p21.3 encompassing common variants 
affecting the risk for MI/CAD. Chromosome 9p21.3 variants 
are, among genome-wide variants, those with the largest 
effect on disease risk (odds ratio ranges of 1.28-1.47).25-27, 

29 These variants have been also successfully replicated in 
several non-Caucasian populations,32-37 but the mechanisms 
by which they increase the risk for MI/CAD is still unclear. 
Interestingly, genetic variants at the same locus, at which 
the genes of CDKN2A and CDKN2B are localized, alter 
susceptibility to other arterial diseases such as abdominal 
aortic aneurism and intracranial aneurism, suggesting that 
chromosome 9p21.3 has a role in the process of arterial wall 
remodeling.38 A few studies have tried to tackle the issue of a 
potential clinical role of this largely replicated genetic locus, 
especially for the prediction of cardiovascular outcomes.39-41 
Horne et al.,39 in a prospective study evaluating the incidence 
of MI in a cohort of CAD patients, found no association with 
incident thrombotic events, suggesting that chromosome 
9p21.3 was associated with the development of CAD 
rather than with the development of MI in CAD patients. 
Accordingly, in a population-based prospective cohort study 
that evaluated healthy adults, Ye et al.40 found an association 
of chromosome 9p21 variants with both the occurrence and 
the progression of CAD. Also Yamagishi et al.,41 in the frame 
of the Atherosclerosis Risk in Communities (ARIC) study 
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(a community-based prospective study of apparently healthy 
adults), found an association with prevalent CAD, peripheral 
artery disease, carotid atherosclerosis, and incident heart 
failure of chromosome 9p21 variants. Although these 
findings suggest a potential role for chromosome 9p21 
variants as predictive markers for the development and the 
progression of CAD, it is still to be established whether and 
to which extent the inclusion of chromosome 9p21 testing in 
already existing prognostic algorithms would result in risk 
reclassification and improved risk prediction.

Conclusion 

GWAS have represented a turning point in the study of 
genetic predisposition to common complex diseases and 
other heritable medical traits. The first generation of GWAS 
is about to be completed. Future steps of genetic research 
in the field will point towards two directions: 1. Translation 
of the results of GWAS into clinical applications. 2. Further 
enlargement of knowledge on the genetic basis of complex 
diseases.

Pertaining to the application of genetic knowledge to the 
clinical field, results of GWAS may be used to refine the 
prediction of disease risk and to identify new therapeutic 
targets for drug development. There is unanimous agreement 
that current knowledge on genetic risk factors is not as 
large as it should be for a useful prediction of the risk of 
common diseases, because genetic risk variants identified so 
far explain only a tiny part of the heritability of the most 
common diseases. For example, it is estimated that MI risk 
variants identified thus far account for as little as 3% of the 
heritability of MI.29 While for most complex diseases the 
number of known genetic variants associated with disease 
risk does not exceed 10, statisticians have estimated that the 
number of variants required for an adequate risk prediction 
would be at least 200-300 variants, given the frequency and 
the disease risk burden of currently known variants.42

The potential of GWAS stands in the unbiased, hypothesis-
free identification of genetic loci, and hence of proteins and 
biological pathways involved in the development of diseases 
whose pathophysiology has been poorly characterized 
so far.43 GWAS have indicated a number of new potential 
therapeutic targets. With respect to the enlargement of our 
knowledge on the genetics of complex diseases, a second 
generation of larger GWAS, including dozens of thousands 
participants, is underway. Huge meta-analyses of already 
published GWAS are also being carried out.

Another expanding field is the development of high-
throughput techniques for the whole resequencing of 
large parts of the genome (or even the entire genome), at 
decreasing costs. While the sequencing of the genome in the 
frame of the Human Genome Project took more than 5 years 
and 100 million dollars, the newly developed techniques of 

massively parallel sequencing should enable researchers to 
obtain in a few weeks an accurate sequence of the genome of 
an individual for 30,000-150,000 dollars.44, 45 The application 
of these techniques to the study of complex diseases, even if 
still far away, holds promise to change the current concepts 
on their genetic architecture. In parallel, the ‘1000 Genomes 
Project’, which will produce the genome sequence of ~2000 
individuals of different ethnic groups, and the ‘Genotype-
Tissue Expression Project’, which will combine genetic data 
with information on gene expression in different tissues, 
should hopefully provide the tools needed to exploit the large 
amount of data made available by these new sequencing 
platforms.
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