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Abstract  
  
Fractals are an intriguing mathematical tool that enables us to model the intricate structures found in nature and comprehend 

the complexity of such objects. They serve as a valuable resource for better understanding our world. Fractal objects are typically 

characterized by their fractal dimension, which plays a vital role in the analysis of fractal signals. In this study, we define the 

concept of fractal dimension and present various methods for its calculation. We demonstrate that the electrocardiogram (ECG) 

is a fractal signal, allowing us to classify heartbeats based on fractal theory. Our goal is to develop a digital technique for ECG 

signal analysis, with the aim of achieving accurate diagnosis of cardiovascular diseases. 
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Introduction  
 

Fractal geometry emerged in the 1970s as a culmination 

of over a century’s worth of research in mathematics and 

physics. This innovative field introduced novel concepts, 

such as fractal dimension and fractal signal, which helped 

deepen our understanding of various phenomena. The 

distinguishing feature of fractals is their fractal dimension, 

which serves as the primary characteristic of each fractal 

object. This dimension encapsulates information on the 

object's geometric structure and is considered a potent 

indicator for gauging its irregularity. It is the overarching 

measure of the erratic nature of fractal objects. Regarding 

temporal signals, the fractal dimension serves as a quantifier 

for the degree of their fluctuation, enabling us to analyze, 

compare, classify, and predict these signals. A key attribute 

of fractal signals is their resilience to changes in time or 

space dilation. Fractal signals can either be one-dimensional, 

such as fractal time series, or multidimensional, like fractals 

derived from natural terrain models. Moreover, these signals 

may exhibit either continuous or discrete amplitude, as well 

as continuous or discrete character.  

Our work aims to explore the connection between fractal 

signals and their fractal dimensions, focusing on how fractal 

characteristics can be leveraged for analysis. To illustrate this 

concept, we present an example of a fractal signal in the form 

of an electrocardiogram (ECG). We selected this example 

due to the global significance of cardiovascular diseases as a 

leading cause of mortality, as reported by the World Health 

Organization (WHO), and the widespread use of ECG 

signals for detecting these conditions. ECG remains one of 

the most commonly performed examinations for 

cardiovascular disease detection and a primary tool for 

diagnosing and analyzing cardiac arrhythmias.  

Cardiovascular disease is recognized as the leading cause 

of mortality worldwide, with statistics indicating a rising 

number of deaths attributable to cardiovascular 

complications. According to the WHO, in 2008, 17.3 million 

deaths globally were caused by cardiovascular issues,1 and 

this figure is projected to increase to 23.3 million by 2030. 

Countries with low to moderate per capita income account 

for roughly 80% of these cases, with a significant portion 

resulting from delayed or inaccurate diagnosis of the 

underlying pathology. As an affordable and dependable 

method for diagnosing cardiac conditions, the ECG signal is 

crucial to assessing heart health.2 The ECG provides a visual 

representation of the heart’s electrical activity. The various 

waves and complexes observed on an ECG trace correspond 

to specific events in the cardiac cycle. The T wave signifies 

ventricular repolarization, the P wave represents atrial 

depolarization, and the QRS complex corresponds to 

ventricular depolarization. The analysis of these components 

allows medical professionals to assess the electrical activity 

of the heart and identify potential abnormalities or 

arrhythmias that may indicate underlying cardiovascular 

conditions. 

The various waves in an ECG signal typically exhibit 

distinct temporal locations and frequency spectra, even when 

originating from the same individual, whether they have a 

cardiac disease or are healthy. Although ECG signal analysis 

can help identify and interpret numerous cardiac conditions, 

some anomalies may not be detectable through this method 

alone. Consequently, there is a need for a more robust and 

reliable approach to ECG signal evaluation that can enhance 

diagnostic accuracy and contribute to improved patient care. 

The goal of this study is to maximize the utility of ECG 

data by proposing a heartbeat classification method. This 

approach is fundamentally rooted in the concept of fractals, 

as the heart exhibits a fractal structure. 

 

 

Methods 
 

The process consists of 2 primary components: fractal 

dimension calculation and classification. The initial step 

involves determining the fractal dimension, while the final 

phase focuses on categorizing arrhythmias. 

 

Fractal characterization of ECG signals 
 

ECG presentation 
 

The ECG reflects the heart’s electrical activity, initiated 

by the electrical activation of muscle cells. In response to 

stimulation, the cell surface rapidly depolarizes, generating 

an electric current that induces contraction. The ECG 

activation wave begins in the right atrium, specifically at the 

Keith and Flack node (denoted as K and F in the figure) 

located near the superior vena cava. This wave then spreads 

across both atria, ultimately reaching the atrioventricular 

node (also known as the Aschoff-Tawara node, denoted as 

AT in the figure) before progressing to the ventricles. 

 

 
 

Figure 1. The images showcase the path traveled by the ECG activation 

wave. 

 

The activation wave generated during cardiac electrical 

activity results in cell depolarization and repolarization 

processes, which can be detected by strategically placed 

electrodes on the body’s surface. The recorded electrical 

signals produce the characteristic waveform seen in a typical 

ECG, as depicted in the figure below. 

 

 
 

Figure 2. The image presents an ECG signal. 
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The fractal structure of the heart 
 

 
 
Figure 3. The fractal structure of the heart is demonstrated here. 

 

In a normal cardiac rhythm, ventricular myocardium 

activation occurs through the bundle of His and Purkinje 

fibers. Purkinje fibers are highly branched and exhibit a 

fractal structure. Research has demonstrated that Purkinje 

fiber activation results in fractal depolarization of the 

ventricles, a process that is reflected in the QRS complex of 

an ECG.  

 

 
Figure 4. The image illustrates the power spectrum of a normal QRS 
complex in an ECG. 

 
The figure above demonstrates a logarithmic plot of the 

average power spectrum of QRS complexes from multiple 

individuals. The plot reveals a decay in 1/fβ, where β 

represents the fractal dimension and f denotes frequency. 

This decay pattern indicates that the QRS complex spectrum 

follows an inverse power law and exhibits a fractional slope. 

The fractal structure of the heart's conduction network, 

particularly the highly branched Purkinje fibers, has been 

suggested as the underlying reason for this spectral 

characteristic. 

 

The Massachusetts Institute of 

Technology (MIT)/Beth Israel Hospital (BIH) 

database 

 
  The ECG signals utilized in this study were obtained 

from the MIT/BIH database,5 a widely recognized and 

extensively used resource for cardiac research. This database 

comprises 48 distinct ECG signal recordings, each 

approximately 30 minutes, collected from 47 unique patients. 

The resolution of these recordings is 200 samples per mV, 

and the sampling frequency is 360 Hz. Across all 48 records, 

there are nearly 109,000 heartbeats classified into 15 

different types of heartbeats. These classifications are based 

on the MIT-BIH arrhythmia classes, which form the 

foundation for distinguishing various cardiac conditions. 

Among these classes, the normal rhythm class, accounting 

for 70% of the beats, is the most prevalent. 

 

Fractal dimension estimation 
 

The fractal dimension is a fundamental concept for 

characterizing fractal objects, serving as a comprehensive 

index to gauge their complexity.6 A fractal is considered 

rigorously self-similar if it can be described as a combination 

of sets, where each set is an exact reduced replica of the 

entire set, as observed in Koch flakes and Sierpinski 

triangles. Nonetheless, most natural objects exhibiting 

fractal-like properties lack this precise self-similarity. 

Instead, they display semi-self-similarity or statistical self-

similarity, where a magnified image of a part of the object 

may not be a replica but retains a similar qualitative 

appearance. As the human heart’s ECG signal exhibits self-

similarity, it necessitates the use of fractal dimension for its 

characterization.7 

 

Techniques to compute the fractal dimension 
 

Various methods have been developed for calculating the 

fractal dimension, including the Higuchi method,8 the Katz 

method,9 the Regularization method,10 and the box-counting 

method.11 Each of these techniques has its unique strengths 

and weaknesses, making them more or less suitable for 

different applications and contexts. 

 

The Higuchi algorithm 
 

The fractal dimension has proven to be a valuable 

descriptive measure for evaluating the self-similarity and 

complexity of biological signals. As the human heart’s ECG 

signal exhibits self-similarity, it necessitates the use of 

fractal dimension for its characterization and differentiation 

between various cardiac pathological conditions.12 

Numerous algorithms have been developed for 

calculating the fractal dimension, as previously mentioned. 

Among these methods, the Higuchi algorithm has been 

recognized as a reliable technique and a good representative 

for identifying disease-related changes in fractal signals.  

 

Presume a time sequence of x= {x (1), x (2), …, x(N)}. 

The fractional dimension is determined in the following 

way:  

 

a) Create 𝐾 new time series 𝑥m
k, which are described 

as: 

𝑥m
k   = {𝑥(𝑚), …, 𝑥 (𝑚 + ⌊ (𝑁 − 𝑚) /𝑘⌋𝑘)} (1) 

Here, K represents the discrete time interval between 

points, and m=1, 2, …, K denotes the initial time value. 

b) As outlined earlier, calculate the length of each 

new time series using the following formula: 

𝐿m(𝑘) = 1𝐾 ⁄ {(𝑁 − 1) / ⌊ (𝑁 − 𝑚) /𝐾⌋𝐾 Σ |𝑥 (𝑚 + 𝑖𝑘) – 𝑥 
(𝑚 + (𝑖 − 1) 𝑘) |} (2) 

Here, the normalization factor is given by (𝑁 − 1)/⌊ (𝑁 − 

𝑚)/𝐾⌋𝐾. 

c) Calculate the curve’s length for the time interval K 

using the following formula: 

L(𝑘) = 1 ⁄ 𝐾 Σm=1
k 𝐿m(𝑘) (3)                                                                 
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d) Finally, the fractional dimension D is represented 

by the curve in the following equation: 

𝑙𝑜𝑔(𝐿(𝑘)) = 𝐷 𝑙𝑜𝑔(1⁄𝐾) +𝑏̅ (4)                                                              
 

The Katz algorithm 
 

The fractal dimension is calculated from the time series 

using the following definition: 
 

DFK= (Log(L))/(Log(d)) (5) 
 

Here, d is the Euclidean distance between the first point 

of the series and the point farthest from it. L represents the 

total length of the ECG time series. The total length L of the 

waveform, which consists of ordered pairs of points (x, y), is 

calculated as the sum of the distances between consecutive 

points as follows: 

 

L = sum (dist (i, i + l)) (6) 

 

The distance between 2 coordinate pairs a = (x, y) and b 

= (u, v), is denoted by the symbol dist (a and b). 

 

Waveforms that progress monotonically possess inherent 

starting points. Thus, the diameter of a waveform, defined as 

its planar extent, is the maximum distance between its 

starting point (point 1) and any other point (point i) on the 

waveform. This is expressed as follows: 

 

d = max (dist (l, i)) (7) 

 

 The Hausdorff algorithm 
 

This method involves covering the curve with balls Bi, 

each having a diameter diam (Bi) that is less than or equal 

to εε. The total measurement of the object can be 

approximated by summing the diameters of these balls. 

Since the intersections of these balls are non-empty, the 

minimum of these measurements should be considered. To 

achieve the best approximation of the set E, εε should be 

allowed to approach 0.  

The Hausdorff dimension is then calculated using the 

following formula: 

 

DFH   =   Lim𝛿→0 (lnN𝛿 / ln (1/𝛿)) (8) 

Here, N𝛿 is the bare minimum of balls with a diameter of 

𝛿 required to pave the curve. 

 

Approximation of the power spectral density 

(PSD) of the QRS complex 
 

 
Figure 5. The figure presents the approximation of the PSD of the QRS 
complex. 

The figure above displays the PSD of a QRS complex, 

along with its approximations using 2 straight lines within 

the distinct frequency ranges of 15 Hz to 19 Hz and 3 Hz to 8 

Hz. The slopes of these lines are calculated for their 

respective frequency intervals. Upon calculation, the first 

slope is found to be 0.02, denoted as p1=0.02, while the 

second slope is −0.02, denoted as p2= −0.02. Each slope 

corresponds to a fractal dimension. 

 

 

Results and Discussion 
 

The fractal dimension of an ECG serves as an indicator of 

the signal’s irregularity or complexity and enables the 

quantification of self-similarity across multiple scales within 

the ECG waveform. This measure provides valuable 

information about the cardiac system’s underlying dynamics 

and can assist in identifying specific heart conditions. 

Various algorithms have been developed to calculate the 

fractal dimension of ECG signals, including the Katz, 

Higuchi, Petrosian, Maragos, and amplitude scale methods.13 

By employing these algorithms, researchers can estimate the 

fractal dimension accurately and classify ECG signals 

accordingly. Kourosh Kiani and Farzane Maghsoudi14 have 

further explored and reviewed these and other related 

techniques.  

The Higuchi method has been recognized for its precision 

and ability to effectively represent disease-related changes in 

fractal signals. In the present study, the fractal dimension was 

computed using the Higuchi algorithm implemented in 

MATLAB. The estimated fractal dimension obtained from 

the raw ECG data was employed to distinguish between the 

ECG signals of healthy individuals and those affected by 

premature ventricular complex (PVC), paroxysmal 

supraventricular tachycardia (PSVT), and premature atrial 

contraction (PAC). By leveraging the fractal dimension 

values, it becomes possible to differentiate between normal 

and diseased states, as well as identify specific cardiac 

conditions such as PVST, PAC, and PVA. 

 Using the fractal dimension and the results, the ECG 

signals can be divided into the following categories: 

 

Normal: fractal dimension >1.56 

PAC: 1.37 < fractal dimension ≤ 1.56 

PVC: 1.3 < fractal dimension ≤ 1.37 

PSVT: 1 < fractal dimension ≤ 1.3 

 

The fractal dimension, therefore, enables differentiation 

between normal and diseased states based on its value. It 

also facilitates the identification of specific cardiac 

conditions such as PVST, PAC, and PVA. As a result, the 

principal objective of this research is to employ the fractal 

dimension for the accurate classification of various 

arrhythmias.  

 

 

Conclusion 
 

The fractal dimension of an ECG signal serves as a 

valuable tool for analyzing and quantifying its complexity.  

This study aims to calculate the fractal dimension to 

facilitate the classification of various cardiac diseases. 



 
 

 

Ben Ali Sabrine et al. 

16 

Fractal analysis techniques are drawn upon to examine 

irregular signals, which are inherently fractal, with ECG 

signals being a prime example. The description and analysis 

of these signals rely significantly on the characterization of 

local regularity. 
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