Cost-Effectiveness of Icosapent Ethyl for Ischemic Cardiovascular Events

Hamid Pourasghari, PhD¹, Samad Azari, PhD^{1,2*}, Negar Omidi, MD³, Jalal Arabloo, PhD⁴, Soheila Rajaie², Mohammad Ali Rezaei, PhD¹, Masoud Behzadifar, PhD⁵, Masih Tajdini, MD⁶

⁴ Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.

⁵ Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.

⁶ Postdoctoral Research Fellow, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, United States.

Received 28 June 2024; Accepted 16 March 2025

Abstract

Background: Icosapent ethyl (IPE) has demonstrated efficacy and safety in reducing the risk of ischemic cardiovascular disease. This study aimed to systematically gather and synthesize existing cost-effectiveness analyses of IPE combined with statin therapy for cardiovascular risk reduction in primary and secondary prevention settings.

Methods: Comprehensive electronic searches were conducted across PubMed/MEDLINE, Scopus, Web of Science Core Collection, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the NHS Economic Evaluation Database (NHS EED), and the Health Technology Assessment (HTA) database to identify relevant literature (up to May 2024). From an initial pool of 580 studies, 11 met the predefined inclusion criteria.

Results: The findings demonstrated that IPE significantly decreased hospitalization and mortality rates compared to standard treatments. The study indicated that IPE provided greater quality-adjusted life years and life-years gained than statin therapy alone. However, IPE is more expensive than conventional medications, such as statins. For instance, the 1-year cost of IPE is \$3768 in Australia and \$3497 in the United States per patient. Additionally, the results revealed that the threshold for assessing the effectiveness of IPE ranged from \$50,000 to \$150,000 in the United States and AUD 50,000 (\$39,000) in Australia.

Conclusion: Based on the current study, IPE is cost-effective, with a higher probability of cost-effectiveness in patients undergoing secondary prevention than those in primary prevention.

J Teh Univ Heart Ctr 2024;19(S1):40-55

This paper should be cited as: Pourasghari H, Azari S, Omidi N, Arabloo J, Rajaie S, Rezaei MA, et al. Cost-Effectiveness of Icosapent Ethyl for Ischemic Cardiovascular Events. J Teh Univ Heart Ctr 2024;19(S1):40-55. DOI: <u>10.18502/jthc.v19is1.18478</u>

Keywords: Cost-effectiveness; Icosapent Ethyl; Statins; Cardiovascular disease; Systematic review

*Corresponding Author: Samad Azari, Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran. Email: Samadazari1010@gmail.com.

The Journal of Tehran University Heart Center 40

¹ Hospital Management Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.

² Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran.

³ Cardiovascular Imaging Department, Tehran Heart Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Introduction

Despite significant advancements in science and pharmacology, cardiovascular disease (CVD) remains the leading cause of mortality and rising healthcare costs, posing a substantial epidemiological and societal burden.^{1, 2} Cardiometabolic, behavioral, environmental, and social risk factors are key contributors to CVD.¹ In the United States, CVD is the cause of 1 in every 3 deaths in the United States and results in direct and indirect costs exceeding \$300 billion annually, with projected annual costs surpassing \$1 trillion by 2035 (3, 4). Even among patients receiving treatment for primary or secondary prevention of cardiovascular risk factors, the rates of cardiovascular events remain persistently high.^{5, 6}

Adjunctive therapies proven to reduce CVD events when combined with statin therapy include the omega-3 fatty acid eicosapentaenoic acid (EPA) and ezetimibe.⁷⁻⁹ In the Japan EPA Lipid Intervention Study (JELIS), the risk of major coronary events decreased by 19% in the group receiving EPA plus statin therapy, significantly lower than in the group receiving statin therapy alone.^{3, 10, 11} According to the REDUCE-IT trial, treatment with IPE significantly reduced the risk of ischemic events, including cardiovascular death, myocardial infarction, and stroke, in patients with elevated triglyceride (TG) levels despite statin use across both primary and secondary prevention populations.9, 12 On 13 December 2019, the United States Food and Drug Administration (FDA) approved Vascepa (Icosapent Ethyl) as an adjunctive therapy to reduce the risk of ischemic CVD events in adults with elevated TG levels of 150 mg/dL or higher. Eligible patients must also have either established CVD or diabetes, along with 2 or more additional CVD risk factors. Patients are advised to maintain physical activity and a healthy diet.13

Given the demonstrated efficacy and safety of IPE in trials such as JELIS and REDUCE-IT, it is crucial to evaluate the long-term cost-effectiveness of this novel drug to optimize the allocation of limited healthcare resources. To our knowledge, no systematic review has yet assessed the lifetime economic impact of IPE for cardiovascular risk reduction. In this context, the present study aimed to systematically gather and synthesize available costeffectiveness and cost-utility analyses of IPE combined with statin therapy, compared to statin therapy alone, for cardiovascular risk reduction in primary and secondary prevention settings. The analysis considers various healthcare systems and perspectives.

Methods

The current systematic review aimed to evaluate the cost-effectiveness of IPE in conjunction with statin therapy compared to statin therapy alone for reducing cardiovascular risk. The protocol for this study has been registered with the Code of Ethics IR.IUMS.REC.1399.701 from the Iran University of Medical Sciences. This study was conducted at the Hospital Management Research Center, Iran University of Medical Sciences, Tehran, Iran.

Study Identification Database search

To conduct this study, the following electronic scholarly databases were systematically searched: PubMed / MEDLINE, Scopus, Web of Science Core Collection, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the NHS Economic Evaluation Database (NHS EED), and the Health Technology Assessment (HTA) database. These databases were searched without restrictions on language, time frame, study design, or publication status. A specific and tailored search strategy was developed for each database. The strategy incorporated a combination of relevant keywords and medical subject headings (MeSH terms in the case of PubMed/MEDLINE) to identify pertinent literature, with the search updated to May 2024.

Search for other resources

The reference lists of included studies were further reviewed to identify additional related studies. The Google Scholar search engine was also utilized to ensure the search was as comprehensive as possible. All identified studies were imported into EndNote software (version X7; Thomson Reuters) for organization and management.

Study screening and selection

After compiling the articles and removing duplicates, their titles and abstracts were screened, and irrelevant articles were excluded. The full texts of the remaining articles were thoroughly reviewed based on predefined inclusion and exclusion criteria, and the reasons for exclusion were documented. All steps of the screening and selection process were conducted independently by 2 researchers. Any disagreements were resolved through discussion to reach a final consensus.

Inclusion and exclusion criteria Inclusion criteria: Intervention and comparator:

Studies were included if they compared the use of IPE in combination with statin therapy against statin therapy alone for reducing cardiovascular risk in patients.

Types of outcomes:

Studies were eligible if they reported at least 1 of the following outcomes:

- Mortality,
- Hospitalization,
- Incremental cost-effectiveness ratio (ICER),
- Cost per quality-adjusted life year (cost per QALY),
- Cost per life-year gained (cost per LYG),
- Cost per unit of effectiveness (in natural units), and
- Net monetary benefit (NMB).

The Journal of Tehran University Heart Center

J Teh Univ Heart Ctr 19 (S1)

```
2024
```

Types of studies:

All types of complete economic evaluation studies were included in the systematic review, including

- Cost-benefit analysis (CBA),
- Cost-effectiveness analysis (CEA), and

• Cost-utility analysis (CUA), whether model-based or trial-based.

Additionally, health technology assessment (HTA) studies were included if they incorporated economic evaluations.

Language restrictions:

Only studies with full text available in English were included.

Exclusion criteria:

Review studies, editorials, letters to the editor, conference/proceeding abstracts, and unpublished grey literature such as dissertations and theses were excluded.

Studies with incomplete evaluations, such as costminimalization analyses, cost-of-illness (CoI) studies, cost analyses, cost outcome descriptions, or cost descriptions, were excluded.

Studies without full text or with full text in a language other than English were excluded.

Animal studies were excluded.

Redundant studies with results published across multiple articles were excluded, with only the highest-quality publication retained after quality assessment.

Assessing the reporting quality of studies:

The reporting quality of economic evaluation studies was assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) tool.¹⁴ The CHEERS tool consists of 24 questions organized into the following 6 sections:

- 1. Title and abstract;
- 2. Introduction;
- 3. Methods;
- 4. Results;
- 5. Disedession; and
- 6. Other.

Each question is evaluated using 1 of 4 assessment options as follows:

- Yes (if the item is fully reported);
- Partially reported;
- No (not reported); or
- Not Applicable.

Two researchers independently assessed the quality of the studies, and any discrepancies were resolved through discussion.

Data extraction and analysis (synthesis):

A data collection form was utilized to extract the relevant data. This form captured the key characteristics of the studies and outcome information, including author, year of publication, sample size (n), intervention, comparators, and primary and secondary outcomes.

Data extraction for each study was conducted independently by 2 researchers and verified by a third researcher. The cost-effectiveness information of the compared technologies was organized into tables and qualitatively synthesized. All currency values were converted to 2022 US dollars.

The present study was conducted and reported following the principles outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.¹⁵

Results

Out of 580 identified items, 40 articles underwent fulltext review. Ultimately, 11 studies that met the criteria for complete economic evaluation and aligned with the research objectives, inclusion, and exclusion criteria were included in the current study (Figure 1). Tables 2 and 3 summarize the key assumptions and cost-effectiveness findings of each study. The extracted components include the author, country and year of the study, patient population (sample size), health outcomes, study perspective, time horizon, study question and intervention performed, mean age of patients in the clinical trial or estimated model, type of model, sensitivity analysis performed, discount rate, costs included in the study, mortality rate, hospitalization rate, LYGs, QALYs, annual and total costs, ICER, and costeffectiveness threshold.

Of the 11 studies included in the final analysis, 5 were conducted in the United States,^{3, 7, 16–18} 2 in Australia,^{9, 19} 1 in Germany,²⁰ 1 in the United Kingdom,²¹ 1 in Canada,²² and 1 in Japan.²³ Most studies were published between 2019 and 2024, following the approval of IPE by the FDA on 13 December 2019, after randomized controlled trials demonstrated a significant reduction in the risk of ischemic events. The most commonly reported health outcomes, in addition to mortality and hospitalization rates, were QALYs, LYGs, and ICER indices. The perspectives of the studies primarily included health systems and payers.

The study time horizon was determined based on the average patient age of 60 years, with most studies adopting a 20-year or lifetime horizon, except for the study by Philip et al. The mean age of patients across the studies was 64 years, except for the study by Kodera et al.⁷ Studies utilized either Markov models or decision-tree methods for their design. All included studies incorporated sensitivity analysis to assess the impact of variable changes on the results. The discount rate applied in these studies ranged from 2% to 5%, consistent with the standards for economic evaluations in developed countries.

Table 2 presents the key results extracted from studies evaluating the cost-effectiveness of IPE combined with statins versus statin therapy alone. The study by Ademi et al¹⁹ demonstrated that, over a 20-year time horizon, the mortality rate per 1000 simulated patients was 736.5 in the IPE plus statin group compared to 794.3 in the statin-only group, indicating a reduction of 58 deaths per 1000 individuals. Additionally, IPE was associated with a significant decrease in hospitalizations. The same study reported that hospitalizations for nonfatal myocardial infarction or nonfatal stroke were 877 cases per 1000 in the IPE plus statin group, compared to 1,147.8 cases per 1000 in the statin-only group, reflecting a reduction of 270 hospitalizations.

For QALY and LYQ indices, studies report higher values for EPA plus statins versus statins. For instance, the QALY index in the ICER study was 10.19 and 9.69 for the EPA and statin groups, respectively. Results show that EPA is more expensive than conventional drugs such as statins. For example, the 1-year cost of an EPA in Australia is \$ 3768 per patient, and the cost in the United States is \$ 3497. The results also show that the threshold for evaluating the effectiveness of EPA varies from \$ 50,000 to \$ 150,000 in the United States, AUD 50,000 (\$ 39,000) in Australia, and \$5 million per QALY (\$ 46,000) in Japan.

Discussion

This systematic review aimed to assess the economic implications of employing IPE for reducing the risk of CVD in primary and secondary prevention. The findings demonstrated that studies evaluating the cost-effectiveness of this novel pharmacological approach encompassed a diverse array of healthcare systems, perspectives, models, costs, and thresholds.

This research focused on analyzing several key aspects related to the cost-effectiveness of IPE compared to standard drugs:

1. Efficacy indices, including mortality rates, hospitalization rates, QALYs, and LYGs, in the IPE group versus standard drugs;

2. Annual and total costs associated with IPE versus standard drugs; and

3. The cost-effectiveness of IPE compared to standard drugs across various countries with differing cost-effectiveness thresholds.

Evaluation of efficacy indices

The findings of this study indicate that IPE was associated with reduced hospitalization and mortality rates compared to standard drugs. Ademi et al¹⁹ demonstrated a reduction in mortality of 58 individuals per 1000 patients in the long term with IPE use, aligning with the results of the REDUCE-IT US clinical trial, which used IPE to reduce cardiovascular mortality.

This study's findings reveal that IPE demonstrates higher QALYs and LYGs efficacy indices than statins. As displayed in Table 4, IPE yielded an average of 10.2 QALYs, while statins resulted in 9.95 QALYs, suggesting a superior quality of life for patients in the IPE group. The observed increase in QALYs may be attributed to the reduced mortality and hospitalization rates among patients receiving IPE.

Similarly, IPE achieved an LYGs index of 13.57, which is 0.31 higher than that of statins, indicating a potential increase in life expectancy for patients in the IPE group. The higher LYGs value observed in the IPE group may be explained by the decreased mortality rate among these patients.

TEHRAN HEART CENTER Annual and total cost of IPE versus statins in different countries

The annual cost for IPE was found to be highest in the United States and lowest in Japan. This study revealed that the total costs for IPE, in all studies except Philip et al,⁷ were higher than those of standard drugs, such as statins. The highest total cost for IPE was reported in Australia at \$73,164, while the lowest was observed in the United States at \$31,774.

The higher total costs associated with IPE may be attributed to the elevated annual costs of this medication in various countries. Nonetheless, when comparing the total costs between IPE and statins, the difference diminished, potentially due to the higher readmission rates and subsequent complications experienced by patients in the statin group.

Cost-effectiveness of IPE in selected countries with different thresholds

The cost-effectiveness of IPE was found to differ between primary and secondary prevention patient groups, as demonstrated by a study conducted in Australia. In the primary prevention group, the cost-effectiveness threshold was lower than the ICER index (\$39,000 vs \$75,000), as shown in Figure 2. Conversely, in the secondary prevention group, the ICER index was lower than the willingness-topay (WTP) threshold, indicating the cost-effectiveness of IPE in this population (\$28,000 vs \$39,000).

Studies in the United States have reported that IPE is a cost-effective alternative to statins within the United States healthcare system, in primary and secondary prevention. Similarly, a study in Japan demonstrated that the cost-effectiveness of IPE was higher in the secondary prevention group than in the primary prevention group. In the secondary prevention group, the ICER and threshold indices were relatively close (\$46,000 and \$50,000, respectively), while the ICER index for the primary prevention group was considerably higher than the threshold (\$46,000 vs \$272,000). A comparison of results across different countries revealed that the highest and lowest ICER indicators for primary prevention were found in Japan and the United States, respectively.

Limitation

The present study identified 11 economic evaluation studies examining the cost-effectiveness of IPE, indicating a need for further research to establish more conclusive results across diverse countries and healthcare systems. It is essential to consider long-term outcomes and potential complications associated with IPE to comprehensively evaluate its cost-effectiveness and potential impact on patients' quality of life.

Conclusion

The findings of this systematic review indicate that IPE effectively reduces cardiovascular risks, leading to

The Journal of Tehran University Heart Center

decreased mortality and hospitalization rates, as well as increased life expectancy and quality of life in both primary and secondary prevention patients. The results further suggest that IPE is cost-effective, with a higher probability of cost-effectiveness observed in the secondary prevention group than in the primary prevention group.

Availability of Data and Materials

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Acknowledgements

We would like to extend our gratitude to everyone who contributed to the writing of this article.

References

- Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. 2020;76(25):2982-3021.
- Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 2020;396(10258):1204-22.
- 3. Ollendorf D, McQueen R, Fazioli KJIfC, Review E. Additive therapies for cardiovascular disease: effectiveness and value. 2019.
- 4. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway44CW, Carson AP, et al. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation. 2019.
- Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. 2019;380(1):11-22.
- Virani SS, Akeroyd JM, Ramsey DJ, Chan WJ, Frazier L, Nasir K, et al. Comparative effectiveness of outpatient cardiovascular disease and diabetes care delivery between advanced practice providers and physician providers in primary care: implications for care under the Affordable Care Act. 2016;181:74-82.
- Philip S, Chowdhury S, Nelson JR, Benjamin Everett P, Hulme-Lowe CK, Schmier JKJJome. A novel costeffectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States. 2016;19(10):1003-10.
- Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, et al. Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with

coronary artery disease secondary prevention analysis from JELIS. 2009;73(7):1283-90.

- Gao L, Moodie M, Li S-C. The cost-effectiveness of omega-3 polyunsaturated fatty acids–The Australian healthcare perspective. European journal of internal medicine. 2019;67:70-6.
- 10. Bhatt DL, Steg PG, Brinton EA, Jacobson TA, Miller M, Tardif JC, et al. Rationale and design of REDUCE-IT: reduction of cardiovascular events with icosapent ethylintervention trial. 2017;40(3):138-48.
- Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. 2007;369(9567):1090-8.
- 12. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New England Journal of Medicine. 2019;380(1):11-22.
- Fares H, Lavie CJ, DiNicolantonio JJ, O'Keefe JH, Milani RVJT, management cr. Icosapent ethyl for the treatment of severe hypertriglyceridemia. 2014;10:485.
- Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS)—explanation and elaboration: a report of the ISPOR health economic evaluation publication guidelines good reporting practices task force. 2013;16(2):231-50.
- Moher D, Liberati A, Tetzlaff J, Altman DG, medicine PGJP. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. 2009;6(7):e1000097.
- Weintraub WS, Bhatt D, Zhang Z, Zhang C, Sarahfaye D, Boden WE, et al. Cost-effectiveness of icosapent ethyl in US REDUCE-IT patients. 2020;75(11_Supplement_1):1914-.
- 17. Weintraub WS, Bhatt DL, Zhang Z, Dolman S, Boden WE, Bress AP, et al. Cost-effectiveness of icosapent ethyl for highrisk patients with hypertriglyceridemia despite statin treatment. JAMA Network Open. 2022;5(2):e2148172-e.
- Weintraub WS, Bhatt DL, Zhang Z, Dolman S, Boden WE, Bress AP, et al. Cost-Effectiveness of Icosapent Ethyl in REDUCE-IT USA: Results From Patients Randomized in the United States. Journal of the American Heart Association. 2024;13(1):e032413.
- 19. Ademi Z, Ofori-Asenso R, Zomer E, Owen A, Liew D. The cost-effectiveness of icosapent ethyl in combination with statin therapy compared with statin alone for cardiovascular risk reduction. European Journal of Preventive Cardiology. 2020:2047487319896648.
- Michaeli DT, Michaeli JC, Boch T, Michaeli T. Costeffectiveness of lipid-lowering therapies for cardiovascular prevention in Germany. Cardiovascular drugs and therapy. 2023;37(4):683-94.
- Michaeli DT, Michaeli JC, Boch T, Michaeli T. Costeffectiveness of icosapent ethyl, evolocumab, alirocumab, ezetimibe, or fenofibrate in combination with statins compared to statin monotherapy. Clinical Drug Investigation. 2022;42(8):643-56.
- 22. Lachaine J, Charron J-N, Gregoire JC, Hegele RA, Leiter LA. Cost-Effectiveness of icosapent ethyl (IPE) for the reduction of the risk of ischemic cardiovascular events in Canada. ClinicoEconomics and Outcomes Research. 2023:295-308.
- 23. Kodera S, Morita H, Kiyosue A, Ando J, Komuro IJCJ. Cost-Effectiveness of Statin Plus Eicosapentaenoic Acid Combination Therapy for Cardiovascular Disease Prevention in Japanese Patients With Hypercholesterolemia—An Analysis Based on the Japan Eicosapentaenoic Acid Lipid Intervention Study (JELIS)—. 2018;82(4):1076-82.

Table 1: Annex A - Search strategy for each database

Database	Date conducted	Search strategy
PubMed	May 4, 2024	"Icosapent ethyl" [tiab] OR vascepa[tiab] OR amr101[tiab] OR amr-101[tiab] OR "eicosapentaenoic acid ethyl ester"[Supplementary Concept] OR "ethyl eicosapentaenoate"[tiab] OR "ethyl icosapentaenoate"[tiab] OR "ethyl eicosapentaenoic acid"[tiab] OR ethyl-EPA[tiab] OR "icosapent ethyl"[tiab] OR "ethyl eicosapentaenoic acid"[tiab] OR Epadel[tiab] OR icosapent[tiab]
Web of Science	May 4, 2024	TS=("Icosapent ethyl" OR vascepa OR amr101 OR amr-101 OR "eicosapentaenoic acid ethyl ester" OR "ethyl eicosapentaenoate")
NHS Economic Evaluation Database (NHS EED) and the health technology assessment		((icosapent ethyl):TI OR (vascepa):TI OR (amr101):TI) and ((Systematic review:ZDT and Bibliographic:ZPS) OR (Systematic review:ZDT and Abstract:ZPS) OR (Cochrane review:ZDT) OR (Cochrane related review record:ZDT) OR (Economic evaluation:ZDT and Bibliographic:ZPS) OR (Economic evaluation:ZDT and Abstract:ZPS) OR Project record:ZDT OR Full publication record:ZDT) IN DARE, NHSEED
Embase	May 4, 2024	'icosapentaenoic acid ethyl ester'/exp OR 'icosapentaenoic acid ethyl ester' OR vascepa:ti,ab,kw OR amr101:ti,ab,kw OR amr-101:ti,ab,kw
Scopus	May 4, 2024	TITLE-ABS-KEY ("'icosapentaenoic acid ethyl ester" OR vascepa OR amr101 OR amr-101 OR "Icosapent ethyl")

Fig. 1 Process of the systematic literature search, according to the preferred reporting items for systematic review and meta-analyses

Fig. 2 Cost-effectiveness Ratio and Threshold in selected countries

The Journal of Tehran University Heart Center

Hamid Pourasghari et al.

Table 2: Characteristics of included studies in the review

Study/ citation	country	Patient population	Health outcome	Perspective	Time horizon	Research question	Mean or Median age	subgroup	Type of model	Sensitive analysis	Discount rate
Ademi et.al, 2019	Australia	The Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention	Mortality, Hospitalization, QALY, LYQs	Australian public healthcare system	20-years	Icosapent + statins vs statins	64 years	Primary vs secondary prevention	Markov model	Y	5%
Gao et.al, 2019	Australia	A cohort of Australian patients aged 45 years and over with established CVD adults with established CVD baine treated with optimal	QALY, LYQs	Australian healthcare system	25-years	Icosapent + statins vs statins	64 years	-	Markov model	Y	3%
ICER, 2019	US	medical management and patients without known CVD but at high	QALY, LYQs	health care sector	lifetime time horizon	Icosapent vs statins	64 years	-	A Markov cohort model	Y	3%
Kodera, et.al 2018	Japan	The Japan Eicosapentaenoic Acid Lipid Intervention Study	QALY, LYQs	Public healthcare funder	30-years	Eicosapentaenoic + statins vs statins	61 years	Primary vs secondary prevention	Markov model	Y	2%
Philip et.al, 2016	US		QALY	Third-party payer	5-years	Eicosapentaenoic + statins vs statins	-	secondary prevention	decision analytic model	Y	3%
Weintraub et.al, 2020	US	REDUCE-IT PATIENTS	QALY, ICER	Payer	in-trial	Icosapent vs standard care	64 years	primary vs secondary prevention	-	Y	-
Michaeli et.al, 2023	Germany	Dyslipidemia patients	QALY, LY, ICER	Germany's healthcare system	20 years	statin combinations with icosapent ethyl vs statin monotherapy	63 years	primary vs secondary prevention	Markov cohort model	Y	3 %
Michaeli et.al, 2022	UK	Dyslipidaemia patients	QALY, LY, ICER	UK's National Health Service	20-year time horizon (lifetime)	statin combinations with icosapent ethyl vs statin monotherapy	63 years	Cosapent ethyl in primary vs secondary prevention: Age < 65 years ≥ 65 years Baseline triglyceride ≥ 200 mg/dL and HDL-C ≤ 35 mg/dL No Yes Baseline LDL-C ≥ 100 mg/dL No Yes Baseline high-sensitivity CRP ≤ 2 mg/L > 2 mg/L	Markov model	Y	3.5% (± 1.5%)
Lachaine et.al, 2023	Canada	Statin-treated patients with elevated triglycerides	QALY, ICER	Canadian healthcare payer perspective	20 years	Icosapent ethyl vs Placebo	Median starting age : Range in REDUCE-IT trial		Markov model	Y	1.5%
Weintraub et.al, 2022	US	Hypertriglyceridemia and known cardiovascular disease or diabetes and at least 1 other risk factor who were treated with statins.	QALY, LY, ICER	US health care sector perspective	lifetime	Icosapent ethyl vs Standard care	64 years	age (≥65 vs <65 years), sex, trial recruit-ment cohort (primary vs secondary prevention), baseline diabetes status, baseline serum triglyc-eride level (≥200 vs <200 mg/dL and ≥150 vs <150 mg/dL), and baseline low- density lipoprotein cholesterol level (≥70 vs <70 mg/dL). age (>65 versus <65 versus, sex, primary versus	Markov model	Y	3 %
Weintraub et.al, 2024	US	Statin-stabilized patients were eligible with fasting triglycerides ≥135 and <500 mg/dL and LDL-C> 40 and ≤100 mg/dL	QALY, LY, ICER	US health sector perspective	Lifetime	Icosapent ethyl vs Standard care	aged 65 to 84 years	secondary prevention, baseline diabetes, baseline serum triglycerides (≥200 versus <200 mg/dL), and ≥150 versus <150 mg/dL), and baseline LDL-C (≥70 versus <70 mg/dL).	Markov model	Y	3 %

47 👝

Cost-Effectiveness of Icosapent Ethyl for Ischemic Cardiovascular Events

Table 3: Summary results of included economic evaluation studies

Study/ citation	Mortality	Hospitalization	QALYs	LYQs	Annual cost	Total Cost	ICER	Threshold	Result
Ademi et.al, 2019	Icosapent + statin= 736.5 in 1000 individuals statin= 794.3 Difference= -57.8	Non-fatalMI/non-fatalStroke:Icosapent + statin=877statin= 1,147.8Difference= -270.8SeriousBleeding:Icosapent + statin= 220.6statin= 208.2Difference=12.4CoronaryRevascularization:Icosapent + statin= 772.4statin= 1,068Difference= -295.8Hospitalizationfor AF:Icosapent + statin= 437.7statin= 300.9Difference= 12.6 &	Icosapent + statin =7.82 statin =7.53 Difference=0.28	Icosapent + statin=10.11 statin=9.78 Difference=0.33	Icosapent + statin= \$1637 statin= \$173	Icosapent + statin= \$89,333 statin=\$76,311	Cost per QALY gained (overall)= AUD \$45,039 Cost per QALY gained (primary prevention)= \$96,136 Cost per QALY gained (secondary prevention)= \$35,935 Cost per YoLS (overall)= \$38,480 Cost per YoLS (primary prevention)= \$113,916 Cost per YoLS (secondary prevention)= \$29,250	AUD50,000	Compared with statin alone, Icosapent ethyl in combination with statin therapy is likely to be cost-effective in the prevention of cardiovascular disease, especially in the secondary preventive setting.
Gao et.al, 2019	-	-	Icosapent = 10.57 Placebo= 10.28 Difference= 0.29	Icosapent = 12.78 Placebo= 12.47 Difference=0.31	AUD3768 per patient	Icosapent = \$83,258 Placebo= \$66,453 Difference= 16,805	Cost per QALY = \$59,036 Cost per LYQs = \$54,358	AUD50,000	Icosapent is not a cost- effective from an Australian healthcare system perspective. The government may consider subsidising this medication given the clinical need but at a discounted acquisition cost.
ICER, 2019	-	<u>-</u>	Icosapent =10.19 Statins=9.69 Difference=0.5	Icosapent =10.21 Statins=9.69 Difference=0.52	Net Price per Year Icosapent =\$1,625	Icosapent: Total costs=\$40,000 Intervention Costs=\$15,000 Non-Intervention Costs=\$25,000 Statins: Total costs=\$31,000 Intervention Costs=\$800 Non-Intervention Costs=\$30,000 Difference=\$9,000	\$18,000 per QALY gained, \$17,000 per LYQs and \$53,000 per MACE avoided	\$50,000, \$100,000, and \$150,000 per QALY	Results suggest that the use of icosapent ethyl (in patients receiving statins) provide clinical benefit in terms of gains in quality- adjusted survival overall survival compared to optimal medical management alone in the adult, established CVD cohort, and adults without known CVD but at high risk for
Kodera, et.al 2018			primary prevention: Eicosapentaenoic + statin=18.8 statin=18.7 Difference=0.1	primary prevention: Eicosapentaenoic + statin=21.2 statin=21.1 Difference=0.1	A dose of 1,800mg costs ¥210.8 in Japan	primary prevention: Eicosapentaenoic + statin=¥3,987,474 statin=¥2,517,209 Difference= The Journal of Tehr	primary prevention: Cost per QALY = ¥29,567,364 Cost per LYQs = ¥32,198,787 secondary prevention: an University Heart Center 48	¥5 million per QALY	cardiovascular events. Eicosapentaenoic +statin combination therapy showed acceptable cost- effectiveness for secondary prevention, but
			J Teh Univ Hee	art Ctr 19 (S1)	2024 h	ttp://jthc.tums.ac.ir			

		The Journal of Tehra	n University Heart Center secondary prevention: Eicosapentaenoic + statin=18.1 statin=17.9 Difference=0.2	secondary prevention: Eicosapentaenoic + statin=20.8 statin=20.6 Difference=0.2		¥1,470,265 secondary prevention: Eicosapentaenoic + statin=¥6,551,407 statin=¥6,5281,864 Difference= ¥	Hamid Pourasghari et al. Cost per QALY = ¥5,450,831 Cost per LYQs = ¥5,410,598		not primary prevention, of CVD in patients with hypercholesterolemia in Japan.
Philip et.al, 2016 Weintraub et.al, 2020	-	-	Eicosapentaenoic + statin=3.627 statin=3.575 Difference=0.052	-	Eicosapentaenoic +Statin= \$3,497 Statin= \$994 Difference=\$2503	Eicosapentaenoic +Statin= \$29,377 Statin= \$30,587 Difference=\$-1210 \$4.16 a day	- primary prevention= \$36,118/QALY	- \$50,000, \$100,000, and \$150,000 per QALY	Combining Eicosapentaenoic with statin therapy for secondary prevention of cardiovascular disease in the United States may be a cost-saving. In the United States, icosapent ethyl was shown to be dominant overall, cost-effective in primary prevention, and dominant in secondary prevention
Michaeli et.al, 2023	Primary prevention CVD death: 3.9 Non-CVD death: 41.7 Secondary prevention CVD death: 3.8 Non-CVD death: 48.8	Primary prevention 4.6 Secondary prevention 4.3	Primary prevention Incremental QALYs: 0.81 Secondary prevention Incremental QALYs: 0.99	Primary prevention Incremental LYs: 0.97 Secondary prevention Incremental LYs: 1.34	Icosapent ethyl: €2,400 Statins: €131.62	Primary prevention €14,732 Secondary prevention €14,333	Primary prevention ICER (costs/LY): 15,130 ICER (costs/QALY): 18,133 Secondary prevention ICER (costs/LY): 10,695 ICER (costs/QALY): 14,485	€20,000	For primary cardiovascular prevention, a combination therapy of icosapent ethyl plus statin is a cost-effective use of resources compared to statin monotherapy. For secondary prevention, icosapent ethyl increases patient benefit at different economic costs.

The Journal of Tehran University Heart Center 50

Weintraub et.al, 2024

	Unstable angina						
	lcosapent ethyl:						
	132 (3.23) Standard care:						
	200 (4.89)						
	200 (
	Over the lifetime						
	New heart failure						
	Icosapent ethyl:						
	513 (6.84)						
	Standard care:						
	480 (0.48)						
	Atrial fibrillation/flutter						
	Icosapent ethyl:						
	428 (5.71)						
	Standard care:						
	374 (4.99)						
	Ventricular tachycardia/fibrillation						
	Icosapent ethyl:						
	74 (0.99)						
	Standard care:						
	76 (1.01)						
	Peripheral arterial disease						
	Icosapent ethyl:						
	475 (6.33)						
	Standard care:						
	502 (6.69)						
	Unstable angina						
	Icosapent ethyl:						
	647 (8.63)						
	Standard care:						
	982 (13.09)						
• Death from	During the trial period	In trial analysis	In trial analysis	In trial analysis	In trial analysis		The REDUCE-IT
any cause,	New heart failure	in that analysis	in that analysis	in that analysis	in that analysis		USA cost effectiveness
nonfatal		Icosapent ethyl:	Icosapent ethyl:	Icosapent ethyl:			analysis has shown that
MI, or	Icosapent ethyl:	Net cost: 3.28	Net cost: 4.23	LY	LY		IPE provides excellent
nonfatal	86 (5.6%)	WAC: 3.28	WAC: 4.23	Net cost: \$33806	Net cost: Dominant		saving (dominant) both in
stroke	Standard care:	Standard care:	Standard care:	 WAC: \$41904	WAC: \$48674	\$50,000	trial over the lifetime as
Incompant other	91 (5.7%)	WAC:3.13	WAC: 4 10	Standard care:			well as in most
Trial: 14.3	Atrial fibrillation /fluttor	WAC.3.13	WAC. 4.10	WAC: \$35386	Net cost: Dominant		sensitivity analyses and
Model: 14.7					WAC: \$36208		subgroups, and even
Standard care:	Icosapent ethyl:	Lifetime model		QALY			US WTP threshold of
Trial:19.3	64 (4.1%)	Icosapent ethyl:	Lifetime model	Net cost: \$29420			\$50 000 per OALY
	51						· 、

gained, both in primary
and secondary
prevention.

	Cost-Effectiveness of Icosape	ent Ethyl for Ischemic Cardiov	ascular Events	TEHRA	AN HEART CENTER
Model:19.5	Standard care:	Net cost:10.36	Icosapent ethyl:	WAC: \$36364	
	66 (4.1%)	WAC:10.36	Net cost: 13.68	Standard care:	Lifetime model
Death from	· ·	Standard care:	WAC:13.68	Net cost: \$30947	
any cause	Ventricular tachycardia/fibrillation	Net cost: 9.83	Standard care:	WAC: \$30947	LY
. ,	Icosapent ethyl:	WAC: 9.83	Net cost: 13.27		Net cost: Dominant
Icosapent ethyl-	17 (1.1%)		WAC:13.27		WAC: \$12385
Trial: 7.2	Standard care:				
Model: 7.4	20 (1.3%)				QALY
Standard care:				Lifetime model	Net cost: Dominant
Trial 9 8	Peripheral arterial disease			LY	WAC: \$9582
Model·9 9	Icosapent ethyl			Icosapent ethyl:	
WIUGEI.J.J	93 (6 0%)			Net cost: \$216243	
	Standard care:			WAC: \$221403	
	115 (7 2%)			Standard care:	
	113 (7.270)			Net cost: \$219212	
	Unstable angina			WAC: \$219212	
	40(2,2%)			OALY	
	49 (3.2%) Standard save			Icosapent ethyl:	
				Net cost: \$216243	
	94 (5.9%)			WAC: \$221403	
				Standard care:	
	Over the lifetime			Net cost: \$219212	
				WAC: \$219212	
	New heart failure				
	Icosapent ethyl:				
	428 (5.71%)				
	Standard care:				
	374 (4.99%)				
	Atrial fibrillation/flutter				
	Icosapent ethyl:				
	74 (0.99%)				
	Standard care:				
	76 (1.01%)				
	Ventricular tachycardia/fibrillation				
	Icosapent ethyl:				
	475 (6.33%)				
	Standard care:				
	502 (6.69%)				
	Peripheral arterial disease				
	Icosapent ethyl:				
	647 (8.63%)				
	Standard care:				
	982 (13.09%)				
	Unstable angina				
	Icosapent ethyl:				
	85 (1.13%)				

Cost-Effectiveness of Icosapent Ethyl for Ischemic Cardiovascular Events

The Journal of Tehran University Heart Center 52

The Journal of Tehran University Heart Center

Hamid Pourasghari et al.

Standard care: 87 (1.16%)

 \mathbf{O}

Abbreviations: wholesale acquisition cost(WAC)

Table 4: CHEERS checklist

Section/item	Item	Recommendation	Ademi	Gao et.al,	ICER, 2019	Kodera, et.al	Philip et.al,	Weintraub	Michaeli	Michaeli	Lachaine	Weintraub	Weintraub
	No		et.al 2019	2019		2018	2016	et.al, 2020	et.al, 2023	et.al, 2022	et.al, 2023	et.al, 2022	et.al, 2024
Title and abstract													
		Identify the study as an economic evaluation or use											
Title	1	more specific terms such as "cost-effectiveness	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
		analysis", and describe the interventions compared.											
		Provide a structured summary of objectives,											
Abstract	2	perspective, setting, methods (including study	v	v	v	v	v	v	v	v	×	v	×
Abstract	2	design and inputs), results (including base case and	1	1	1	1	1	1	1	1		1	
		uncertainty analyses), and conclusions.											
Introduction													
		Provide an explicit statement of the broader context	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Background and objectives	3	for the study.	1		-	-	1	1	1	1	1	1	1
Duckground and objectives	5	Present the study question and its relevance for	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
		health policy or practice decisions.	-	-	-	-	-	-		-	-	-	•
Methods													
Target population and		Describe characteristics of the base case population											
subgroups	4	and subgroups analysed, including why they were	Y	Y	Y	Y	Ŷ	Y	Y	Y	Y	Y	Y
0 1		chosen.											
Setting and location	5	State relevant aspects of the system(s) in which the	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
0		decision(s) need(s) to be made.											
Study perspective	6	Describe the perspective of the study and relate this	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
		to the costs being evaluated.											
Comparators	7	Describe the interventions or strategies being	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
•		State the time horizon(a) over which costs and											
Time horizon	0	State the time horizon(s) over which costs and	v	v	v	v	V	V	V	V	v	V	V
Time nonzon	0	consequences are being evaluated and say why	I	1	I	1	I	I	I	I	I	I	I
		appropriate. Report the choice of discount rate(s) used for costs											
Discount rate	9	and outcomes and say why appropriate	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
		Describe what outcomes were used as the											
Choice of health outcomes	10	$m_{equation}$ measure(s) of henefit in the evaluation and their	v	v	v	v	v	v	v	v	v	v	v
choice of health outcomes	10	relevance for the type of analysis performed	1	1	1	1	1	1	1	1	1	1	1
		Single study-based estimates: Describe fully the											
		design features of the single effectiveness study and											
	11a	why the single study was a sufficient source of	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
Measurement of effectiveness		clinical effectiveness data											
		Synthesis-based estimates: Describe fully the											
	11b	methods used for identification of included studies	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
	110	and synthesis of clinical effectiveness data.	-	-	-	-	-			-	-	-	•
Measurement and valuation of		If applicable, describe the population and methods											
preference-based outcomes	12	used to elicit preferences for outcomes.	Y	Y	Y	-	Y	-	Y	Y	×	Y	×
· · · · · · · · ·		Single study-based economic evaluation: Describe											
Estimating resources and costs	13a	approaches used to estimate resource use associated	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
č		with the alternative interventions. Describe primary											
		53											

		Cost-Effectiveness of Icosapent Ethyl for Iso	chemic Cardio	vascular Events				TEHRAN	HEART CENTER	$\mathbf{\overline{\mathbf{V}}}$			
		or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs. <i>Model-based economic evaluation:</i> Describe											
	13b	resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to	Y	-	Y	Y	Y	Y	Y	Y	Y	Y	Y
Currency, price date, and		opportunity costs. Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting											
conversion	14	estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	Ŷ	Ŷ	Ŷ	Y	Y	Y	Y	Y	Ŷ	Y	Ŷ
Choice of model	15	decision-analytical model used. Providing a figure to show model structure is strongly recommended.	Y	Y	Y	-	-	-	Y	Y	Y	Y	Y
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model. Describe all analytical methods supporting the evaluation. This could include methods for dealing with skawad missing or consorted data	Y	Y	Y	Ν	Y	-	Y	Y	Y	Y	×
Analytical methods	17	with stewed, missing, of censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty. Report the values, ranges, references, and, if used, probability distributions for all parameters. Report	-	Ν	Y	Y	Y	Y	×	×	Y	Y	×
Study parameters	18	reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended. For each intervention, report mean values for the main categories of estimated costs and outcomes of	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Incremental costs and outcomes	19	interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios. <i>Single study-based economic evaluation:</i> Describe the effects of sampling uncertainty for the estimated	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Characterising uncertainty	20a	incremental cost and incremental effectiveness parameters, together with the impact of methodological assumptions (such as discount rate, study perspective). <i>Model-based economic evaluation:</i> Describe the	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y
	20b	effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions. If applicable, report differences in costs, outcomes, or cost-effectiveness that can be explained by	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
Characterising heterogeneity	21	variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Ν	Ν	Y	Ν	-	-	×	×	×	×	×
							The Journ	nal of Tehran Uni	versity Heart Cer	nter 54			

 \sim

		The Journal of Tehran University H	eart Center					He	amid Pourasghari	et al.			
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non- monetary sources of support.	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Y	Y	Y	Y	Y	-	Y	Y	Y	Y	Y