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Abstract

Cirrhosis is characterized by marked abnormalities in the cardiovascular system. A hyperdynamic splanchnic and sys-
temic circulation is typical of cirrhotic patients and has been observed in all experimental forms of portal hypertension. The 
hyperdynamic circulation is most likely initiated by arterial vasodilatation, leading to central hypovolemia, sodium retention, 
and an increased intravascular volume. Despite the baseline increase in cardiac output, ventricular inotropic and chrono-
tropic responses to stimuli are blunted, a condition known as cirrhotic cardiomyopathy. This review briefly examines the 
major mechanisms that may underlie these cardiovascular abnormalities, concentrating on nitric oxide, endocannabinoids, 
prostaglandins, carbon monoxide, endogenous opioids, and adrenergic receptor changes. Future work should address the 
complex interrelationships between these systems.
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Introduction

The clinical picture of patients with cirrhosis is dominated 
by the classical complications to portal hypertension, such as 
ascites, bleeding from esophageal varices, and encephalopathy. 
In addition, a considerable number of patients show signs 
of peripheral vasodilatation with palmar erythema and 
reddish skin, raised and bounding pulse, and a low systemic 
blood pressure indicating a hyperdynamic circulation.1 The 
hyperdynamic syndrome comprises an increased heart rate, 
cardiac output, and plasma volume, and a reduced systemic 
vascular resistance and arterial blood pressure.2,3 Despite the 
increased basal cardiac output, cardiac response to physiologic 
or pharmacologic stimuli is known to be subnormal4,5, a 
phenomenon called “cirrhotic cardiomyopathy”.6,7 Cirrhotic 
cardiomyopathy is variably associated with a baseline 
increase in cardiac output, defective myocardial contractility, 
and lowered systo-diastolic response to inotropic and 

chronotropic stimuli, down-regulated β-adrenergic function, 
slight histo-morphological changes, and impaired electric 
“recovery” ability of ventricular myocardium.8

In addition, patients with cirrhosis develop complications 
from a variety of organs including the lungs, kidneys, and 
other organ systems.9

This review will summarize the recent work on pathogenic 
mechanisms underlying two conditions of vascular and 
cardiac abnormalities in cirrhosis.

Vascular Changes in Cirrhosis

Vascular abnormalities are ubiquitous in cirrhosis. It 
has long been known that cirrhosis may be considered 
as a vascular disease of the liver, owing to the marked 
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anatomic changes that occur at the intrahepatic circulation.10 
A hyperdynamic splanchnic and systemic circulation is 
typical of cirrhotic patients and has been observed in all 
experimental forms of portal hypertension. Its presence is 
associated with extensive portal-systemic shunting and/
or hepatic failure, and contributes to the severity of portal 
hypertension and to other manifestations of chronic liver 
disease. The hyperdynamic circulation is most likely initiated 
by arterial vasodilatation, leading to central hypovolemia, 
sodium retention, and an increased intravascular volume. 
This combination of vasodilatation and an expanded 
intravascular volume is necessary for the full expression of 
the hyperdynamic circulatory state.11 In the vascular biologic 
aspect, this excessive arterial vasodilatation observed in the 
arterial splanchnic and systemic circulation is an extremely 
unique and interesting phenomenon because in the case of 
most diseases such as atherosclerosis and diabetes mellitus 
it is arterial vasoconstriction that is associated with the 
progressive development of symptoms.12 For several years, 
efforts have been made to understand the mechanism of 
this arterial vasodilatation observed in the splanchnic and 
systemic circulation. This part of this review is to summarize 
our current knowledge about what molecules and factors are 
known to be involved in or potentially involved in the arterial 
vasodilatation in cirrhosis.

Nitric oxide (NO)

Nitric oxide was proposed as a putative mediator of 
splanchnic vasodilatation in portal hypertension in 1991.13 

Since then; a strong body of evidence from human and 
experimental models of cirrhosis has supported the notion 
that changes in NO activity affect different vascular beds in 
variable ways.

Nitric oxide is synthesized in the vascular endothelium from 
L-arginine by NO synthase (NOS)14 , of which three isoforms 
have been identified: inducible NOS (iNOS), constitutive 
endothelial NOS (eNOS), and neuronal NOS (nNOS).15,16 In 
portal hypertension, there seems to be a diminished release of 
NO from sinusoidal endothelial cells in the cirrhotic liver.16,17 
In the liver microcirculation, eNOS expression is decreased 
in a cirrhotic rat model.18 Simvastatin enhances the hepatic 
nitric oxide production and decreases the hepatic vascular 
tone in patients with cirrhosis.19 An NO donor or eNOS gene 
transfection, which compensates for the decreased hepatic 
eNOS expression, significantly lowers the increased portal 
pressure in cirrhosis.18,20 

On the other hand, in the systemic circulation, there 
is evidence of increased eNOS14,21,22, iNOS23 or nNOS24 
upregulation. Exhaled air from cirrhotic patients contains 
higher NO levels than that of controls and correlates with the 
severity of disease and degree of hyperdynamic circulation; 
in animal models and cirrhotic patients, blockade of NO 
formation significantly increases arterial blood pressure and 

decreases plasma volume and sodium retention.25

Patients with cirrhosis have increased plasma levels 
of nitrites and nitrates, the NO degradation products.26 
A study performed in cirrhotic patients undergoing liver 
transplantation showed a higher NOS activity in the hepatic 
artery of these patients than that in the controls, and this 
abnormality was more pronounced in patients with ascites.27 
Inhibition of nitric oxide production reduces superior 
mesenteric artery flow28,29, portal systemic shunting30, and 
partially prevents the development of the characteristically 
hyperdynamic circulation of portal hypertension.31

Taken together, there is a growing body of evidence that 
the systemic NO production is increased and precedes the 
development of the hyperdynamic circulation in cirrhosis, 
thereby playing a major role in the arteriolar and splanchnic 
vasodilatation and vascular hyporeactivity.15,32 

Endocannabinoids

Cannabis has been used for psychoactive and recreational 
purposes as well as in traditional medicine, long before the 
advent of modern medicine and scientific research.33 The 
active component of cannabis, tetra-hydro-cannabinol (THC) 
was discovered in 1964.34 This finding led to the discovery 
of two specific receptors of cannabinoids. The cannabinoid 
receptor CB1 receptor was found initially in the brain35 and 
subsequently in the gut and vascular endothelium.36-38 The 
CB2 receptor was isolated primarily in the immune system.39 
The first endogenous ligand for these receptors was found 
in 1992 and was designated as Anandamide.40 Following 
this breakthrough, several other ligands were reported, e.g. 
2-arachidonyl-glycerol (2-AG), noladine, and oleamide.41

It has been shown that anandamide increased in cirrhotic 
monocytes and overactivation of CB1 receptors within the 
mesenteric vasculature may contribute to the development of 
splanchnic arterial vasodilatation and portal hypertension.42 
The blockade of CB1 receptor by the antagonist SR141716A 
increases mean arterial pressure42,43 and peripheral resistance43 
in rats with CCl4-induced cirrhosis.

We also showed that AM251, a selective CB1 antagonist, 
increased blood pressure and systemic vascular resistance of 
bile duct ligated-cirrhotic rats, in agreement with previous 
studies.44  

Batkai et al. (2001) demonstrated that SR141716A injection 
caused a decrease in mesenteric arterial blood flow and portal 
vein pressure in CCl4-induced cirrhotic animals.42 We also 
showed that AM251 administration induced the same effect 
on superior mesenteric artery blood flow in bile duct ligated 
rats.44

Yang et al. (2007) reported that following acute AM251 
infusion, a simultaneous decrease in portal venous pressure 
and superior mesenteric artery blood flow and an increase in 
superior mesenteric artery resistance index were observed in 
bile duct ligated rats.45
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Using intravital microscopy shows that acute AM251 
administration significantly constricts mesenteric arterioles 
(first order branch) of bile duct ligated rats, while it has no 
effect on bile duct ligated venules or arterioles and venules 
(first order branch) of control rats.44 On the other hand, 
chronic treatment for one week with AM251 significantly 
decreases portal venous pressure and superior mesenteric 
artery blood flow in bile duct ligated rats.45

Anandamide-induced relaxation is significantly potentiated 
in mesenteric vascular beds of cholestatic rats preconstricted 
with phenylephrine. Chronic treatment of bile duct-ligated 
animals with L-NAME (a non-selective iNOS inhibitor) 
and aminoguanidine (a selective iNOS inhibitor) blocks this 
hyperresponsiveness. Although acute L-NAME treatment of 
mesenteric beds completely blocks the anandamide-induced 
vasorelaxation in sham-operated rats, this vasorelaxation still 
is present in bile duct ligated animals. These effects indicate 
enhanced anandamide-induced vasorelaxation in 7-days’ bile 
duct ligated rats. Moreover, NO overproduction possibly 
through iNOS may be involved in cholestasis-induced 
vascular hyperresponsiveness.46

In another study by Domenicali et al. (2005), mesenteric 
vessels of CCl4 induced-cirrhotic animals displayed greater 
sensitivity to anandamide than those of the control vessels, 
which indicated that the endocannabinoid system might 
have greater local vasodilator activity in the splanchnic 
circulation.47 This vasodilator response was reverted by CB1 
receptor blockade, but not after endothelium denudation 
or nitric oxide inhibition. This discrepancy for NO results 
between these two studies might be because of different 
models, as the first paper used 7-days’ bile duct ligated rats 
induced by cholestasis, whereas in the second experiment, 
rats were completely cirrhotic. Domenicali et al. (2005) also 
showed that anandamide had no effect on distal femoral 
arteries.47 These results emphasize the tissue selectivity of 
endocannabinoids and point to anandamide as an important 
local regulator of vascular tonicity in the mesenteric circulation 
in pathological conditions such as hepatic cirrhosis.

Carbon monoxide (CO)

Studies suggest a possible role of CO, an end product 
of the heme oxygenase (HO) pathway, in vasodilatation in 
cirrhosis.48,49 Heme oxygenase is an enzyme that catabolizes 
heme derived from heme-containing proteins, especially 
hemoglobin to biliverdin, which is then rapidly transformed 
to bilirubin and CO.50 Carbon monoxide has a number of 
important biological effects, including vasodilatation through 
activation of guanylyl cyclase of vascular smooth muscle 
cells, and seems to play an important role in the regulation of 
blood flow and resistance in several vascular beds.51

A constitutive isoform of HO, HO-2 is mainly expressed 
in the spleen, but can also be found in many other tissues, 
including blood vessels.52,53 Under pathologic conditions, HO 
activity may increase markedly due to the upregulation of an 

inducible isoform of the enzyme, HO-1, also known as heat 
shock protein 32.54 In portal hypertension, HO-1, not HO-2, is 
up-regulated in systemic and splanchnic arterial circulations. 
Carbon monoxide produced by HO-1, synergistically with 
NO, plays a role in arterial vasodilatation observed in 
cirrhosis with portal hypertension. 48,49

Prostaglandins

Prostacyclin (PGI2), a major product of vascular 
cyclooxygenase, is formed primarily in endothelial cells and 
also in the media and adventitia in response to both physical 
and humoral stimuli that also release NO.55 Prostacyclin 
causes relaxation of vascular smooth muscle by activating 
adenylyl cyclase and increasing the production of cyclic 
AMP.

An increased basal release of PGI2 is thought to have a 
major role in the pathogenesis of vasodilatation and vascular 
hypocontractility associated with portal hypertension. In 
agreement with this hypothesis, the whole-body production 
of PGI2 is increased in portal hypertensive animals.56,57 
Moreover, portal venous PGI2 levels are substantially higher 
in portal hypertensive animals and cirrhotic patients, which 
suggests that portal venous release of PGI2 may play a role 
in the development of the splanchnic hyperemia, collateral 
circulation, and portal hypertensive gastropathy.57,58 

Initial studies with indomethacin demonstrated a significant 
reduction in circulating PGI2 levels concomitant with a 
reduction in splanchnic blood flow in portal hypertensive 
animals.58,59

In addition to decreased hepatic metabolism due to 
pronounced portosystemic shunting (PSS), several studies 
have also implicated exaggerated cyclooxygenase expression 
and activity within the hyperemic vasculature as a possible 
reason for the enhanced circulating PGI2 levels.60

Endogenous opioids

It has been shown that cirrhosis is associated with increased 
plasma levels of the endogenous opioid peptides.61,62 
They are also reputed to be possible mediators of some 
chronic liver disease complications such as ascites63 and 
bleeding esophageal varices.62 Furthermore, in our previous 
experiments, we demonstrated the endogenous opioid 
peptides’ role in the hyporesponsiveness of the cardiovascular 
system to exogenous stimulation in cholestatic rats.64-66 The 
precise reason for the increased opioid activity in cirrhosis 
is not yet completely understood, but it is likely that both 
the overproduction of the endogenous opioid peptides and 
protection of these peptides from degradation may contribute 
to the elevation of total opioid activity.61,62 

Recently, we showed that biliary cirrhosis is accompanied 
with a decrease in baseline perfusion pressure in mesenteric 
vascular bed and that chronic opioid receptor blockade with 
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naltrexone significantly increases this pressure. The maximum 
mesenteric vascular bed pressure response to phenylephrine 
is decreased significantly in cirrhosis, and chronic naltrexone 
treatment completely improves it. Chronic opioid receptor 
blockade did not modulate the increased nitrite/nitrate levels 
following cholestasis. These results   provided evidence 
on the contribution of the endogenous opioid system to 
vascular hyporesponsiveness in cirrhosis independent of NO 
production.67 

Cirrhotic Cardiomyopathy

The possibility of heart dysfunction in cirrhosis, first 
described in 1953,1 was regarded as just related to the 
eventual metabolic complications of alcohol intake or 
haemochromatosis.68 However, during the past 2 decades, it 
has become clear that blunted ventricular contractility with 
stress is also present in nonalcoholic patients and animal 
models of cirrhosis. In the 1990s, numerous studies in patients 
with nonalcoholic cirrhosis conclusively demonstrated that 
depressed ventricular contractile responses to stimuli are 
found in all forms of cirrhosis.69

In the absence of consensus definitions, the term “cirrhotic 
cardiomyopathy” is defined at present as: 1) baseline increased 
cardiac output but blunted ventricular response to stimuli, 
2) systolic and/or diastolic dysfunction, 3) absence of overt 
left ventricular failure at rest, and 4) electrophysiological 
abnormalities including prolonged QT interval on 
electrocardiography and chronotropic incompetence.7,70,71 
Not all features are required for the diagnosis; for example, 
only 30–60% of patients show a prolonged QT interval.69 

Baik et al. (2007), believe that at least one feature of 
cirrhotic cardiomyopathy, such as electrocardiographic 
QT prolongation or diastolic dysfunction, is present in the 
majority of patients with cirrhosis who have reached Child-
Pugh stage B or C (representing moderately or severely 
advanced liver failure). Moreover, diastolic dysfunction 
is probably present in virtually all patients with cirrhotic 
cardiomyopathy, and simple echocardiographic indices such 
as the E/A ratio may detect diastolic dysfunction even at rest. 
Indeed, once cirrhosis has advanced to a moderate stage, with 
the accumulation of peripheral edema or ascites, it appears 
that some element of diastolic dysfunction is universally 
present.69

Cirrhotic cardiomyopathy is usually clinically latent 
or mild, likely because the peripheral vasodilatation 
significantly reduces the left ventricle after-load, thus 
actually “auto-treating” the patient and masking any severe 
manifestation of heart failure. In cirrhotic patients, the 
presence of cirrhotic cardiomyopathy may become unmasked 
and clinically evident by certain treatment interventions that 
increase the effective blood volume and cardiac pre-load, 
including surgical or transjugular intrahepatic porto-systemic 

shunts, peritoneo-venous shunts (LeVeen), and orthotopic 
liver transplantation. Under these circumstances, an often 
transient overt congestive heart failure may develop, with 
increased cardiac output as well as right atrial, pulmonary 
artery, and capillary wedge pressures.8 We herein review 
possible pathogenic mechanisms reported by our laboratory 
and others.

β- adrenergic signaling

In the subjects suffering from liver cirrhosis, a deep 
alteration of the autonomic adrenergic function has been 
reported, 72,73 which correlates with the severity of the disease. 
In these patients, both inotropic and chronotropic responses 
to β-adrenergic agonist stimulation are actually diminished. 
In this way, the response to norepinephrine, angiotensin II, 
and dobutamine is decreased, and no significant heart rate 
increase occurs during the Valsalva maneuver, ice-cold 
skin stimulation, or mental stress.8 Moreover, the dose of 
isoproterenol required for heart rate to increase 25 beats/
min is significantly higher in cirrhotic patients than that in 
controls.74,75 We also showed that the maximum effects of 
isoproterenol on chronotropic and inotropic responses were 
significantly reduced in isolated atria and papillary muscles 
of cirrhotic rats.76

The response to posture variations is reduced too, due to 
a blunted baroreflex function, with a tendency to orthostatic 
hypotension, and no significant increase in heart rate during 
tilting test.8 A significant downregulation of the β-adrenergic 
receptors, which has been demonstrated in cirrhosis, may 
account for the above-mentioned clinical and experimental 
data.77,78 

It has been shown that the expression and responsiveness 
of β-adrenergic receptors77 as well as their post-receptor 
signaling pathway is blunted in the cardiac tissue of cirrhotic 
rats. Post-receptor impairment was found at different levels 
including content and function of stimulatory Gs proteins79, 
uncoupling of the β-adrenoceptor-ligand complex from 
G protein80, and responsiveness of adenylyl cyclase to 
stimuli.79,81

The cell membrane fluidity is critical in the correct 
function of several membrane-bound receptors, including 
β-adrenergic ones.82 In fact, a decreased membrane fluidity 
(due to an increased cholesterol content and cholesterol/
phospholipid ratio) in the cardiomyocytes of bile duct 
ligated rats was reported to be associated with a blunted 
β-adrenergic receptor response, with an alteration of the 
signal transduction pathway79,82 and of the conductance of 
the gap–junction channels.79,83

Nitric oxide

Nitric oxide is known to negatively regulate cardiac 
contractile function. It has been shown to be involved in 
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some types of cardiac dysfunction including ischemic heart 
disease.84 Balligand et al. (1993) found that the inhibition 
of NO synthesis by L-NMMA significantly increased 
the contractile response of rat ventricular myocytes to 
the β-agonist isoproterenol without affecting baseline 
contractility.85 In terms of a cirrhotic model, van Obbergh 
et al. (1996) reported on the role of NO in bile duct ligated 
cirrhotic rat.86 They showed that L-NMMA significantly 
increased contractile function in isolated working cirrhotic 
hearts but had no effect on controls. It has been also shown 
that in the cirrhotic rats, baseline isoproterenol- stimulated 
papillary muscle contractile force was lower than that in 
the control groups. But when the papillary muscles were 
preincubated with the NOS inhibitor L-NAME, contractile 
force increased significantly in the cirrhotic rats, whereas 
control muscles were unaffected. In addition, cirrhotic 
cardiomyocytes showed an increased iNOS mRNA and 
protein expression, whereas eNOS showed no significant 
difference in the expression between the bile duct ligated and 
the sham control hearts. Moreover, the NO donor S-nitroso-N-
acetyl penicillamine inhibited papillary muscle contractility. 
Whether the effects of NO are mediated by the inhibition 
of adenylyl cyclase activity or through cGMP remains 
to be further clarified. However, it has been reported that 
TNF-α and cGMP content in cardiac homogenates showed 
a significant increase in bile duct ligated rats, suggesting a 
possible cytokine-iNOS-cGMP mediated pathway of action 
for NO in the pathogenesis of cirrhotic cardiomyopathy.87

In our recent paper, we showed that the basal 
abnormalities and the attenuated chronotropic and inotropic 
responses to isoproterenol were completely corrected by 
the administration of L-NAME and aminoguanidine in 
cirrhotic rats, implying the role of iNOS in these events.76 
We also reported that despite QT prolongation, epinephrine 
induced fewer arrhythmias in cirrhotic rats compared to 
sham-operated animals. Chronic, but not acute, L-NAME 
administration corrected the QT prolongation in cirrhotic 
rats88 and restored the susceptibility of cirrhotic and 
cholestatic rats to arrhythmias.88,89 

Endocannabinoids

Hypotension and bradycardia are the most important features 
elicited by the systemic administration of cannabinoids,90 and 
endocannabinoids are known to have a negative inotropic 
effect on cardiac contractility in both humans91 and rats.92 

The plasma level of an anandamide is known to be 
increased in cirrhosis.42 Gaskari et al. (2005) demonstrated a 
negative inotropic effect of anandamide in the left ventricular 
papillary muscles of cirrhotic rats. This inhibitory effect on 
contractility was completely blocked by incubation with 
AM251, a known CB1 antagonist, thus confirming that the 
effect of anandamide is mediated by CB1 receptors. They also 
showed a major role for an increased local cardiac production 

of endocannabinoids in cirrhotic cardiomyopathy. That 
conclusion was based on the restoration of blunted contractile 
response of isolated left ventricular papillary muscles from 
bile duct ligated cirrhotic rats after preincubation with a CB1 
antagonist, AM251. Additionally, endocannabinoid reuptake 
blockers (VDM11 and AM404) enhance the relaxant 
response of cirrhotic papillary muscle to higher frequencies 
of contraction in an AM251-sensitive fashion, suggesting an 
increase in the local production of endocannabinoids acting 
through CB1 receptors.93 

Bolus intravenous injection of the CB1 antagonist 
AM251 (3 mg/kg) acutely increased mean blood pressure, 
as well as both load-dependent and -independent indexes of 
systolic function, whereas no such changes were elicited by 
AM251 in the control rats. Furthermore, the tissue levels of 
the endocannabinoid anandamide increased 2.7-fold in the 
heart of the cirrhotic compared with control rats, without 
any change in 2-arachidonoylglycerol levels; whereas in 
the cirrhotic liver, both 2-arachidonoylglycerol (6-fold) 
and anandamide (3.5-fold) were markedly increased. CB1-
receptor expression in the heart was unaffected by cirrhosis, 
as verified by Western blotting. Activation of cardiac CB1 
receptors by endogenous anandamide contributes to the 
reduced cardiac contractility in liver cirrhosis, and CB1-
receptor antagonists may be used to improve contractile 
function in cirrhotic cardiomyopathy and, possibly, in other 
forms of heart failure.94 

Endogenous opioids

Previous experiments have shown that the endogenous 
opioid peptides are produced and secreted by the cardiac 
myocytes as well as the sympathetic nerves and adrenal 
glands.95,96 It is well known that the endogenous opioid 
peptides are involved in the regulation of the cardiovascular 
system through both peripheral and central receptors. 
Besides modulating the autonomic nervous system97, 
they have been demonstrated to have effects on the 
cardiac rhythm98 and contractility.99 Abnormalities of the 
endogenous opioid peptides system have been reported in 
several pathophysiological conditions in both human and 
animal models of cardiovascular diseases such as acute or 
chronic heart ischemia and genetic hypertension.100-102 In 
our previous experiments, we demonstrated the endogenous 
opioid peptides’ role in bradycardia and hyporesponsiveness 
of cardiovascular system to exogenous stimulation in 
cholestatic rats.64-66,103 We also showed that the incubation 
of the cirrhotic papillary muscles with naltrexone restored 
the basal contractile impairment to the sham-control 
level, and also corrected the chronotropic and inotropic 
hyporesponsiveness of cirrhotic rats to isoproterenol 
stimulation. These findings provide the evidence for the 
endogenous opioid peptides regulatory role on the basal 
cardiac contractile impairment in cirrhosis.76

Cardiovascular Abnormalities in Cirrhosis: the Possible Mechanisms
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Carbon monoxide

An increased expression of inducible HO and cGMP levels 
was demonstrated in the left ventricle of the bile duct ligated 
rats, whose isolated papillary muscles did exhibit a blunted 
contractility. The treatment with Zn-protoporphyrine IX (an 
HO inhibitor) reduced cGMP levels, thus normalizing the 
myocardial inotropic ability.104 These findings suggest that 
the activation of the HO-CO pathway in cirrhosis involves 
the catalytic action of HO-1, with the cardiodepressant effects 
of increasing levels of CO occurring via the stimulation of 
cGMP.105 

Conclusion

Splanchnic vasodilatation in relation to portal hypertension 
is responsible for the hyperdynamic circulation and abnormal 
distribution of blood volume with a reduced “effective arterial 
blood volume” and activation of baroreceptor and volume-
receptor reflexes as the outcome. The enhanced vasodilatation 
and counter regulatory overactivity of vasoconstrictor systems 
play major roles in the development of the multi-organ failure 
in cirrhosis with impaired function and perfusion of kidneys, 
lungs, brain, skin, and muscles. Underlying mechanisms of 
vascular abnormalities in cirrhosis have been extensively 
explored in recent years, and a number of vasoactive mediator 
systems including nitric oxide, endocannabinoids, carbon 
monoxide, prostaglandins, and endogenous opioids may be 
common to the genesis of these conditions. 

Experimental and clinical studies of patients with cirrhosis 
strongly suggest the presence of latent heart failure with 
impaired reactions to standardized provocations. This has 
given rise to the introduction of the clinical entity cirrhotic 
cardiomyopathy. Cirrhotic cardiomyopathy is clinically and 
pathophysiologically different from alcoholic heart muscle 
disease. Cirrhotic cardiomyopathy comprises changes in 
impaired cardiac contractility during the preload and afterload, 
decreased b adrenergic receptor function, post-receptor 
dysfunction, defective excitation contraction coupling, 
and in some patients conductance abnormalities.  Cirrhotic 
cardiomyopathy may cover different pathophysiological 
mechanisms including β- adrenergic signaling, nitric oxide, 
endocannabinoids, endogenous opioids, and carbon monoxide 
abnormalities. Considering the undeniable interrelation 
of different systems in both hyperdynamic circulation and 
cardiomyopathy, further studies are required to elucidate the 
complex interactions between these mechanisms.
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