Original Article

Left Ventricular Dimension after Mitral Valve Surgery in Rheumatic Mitral Stenosis: the Impact of Myocardial Fibrosis

Abstract

Background: Patients with rheumatic mitral stenosis (MS) experience changes in left ventricular (LV) dimensions after mitral valve surgery. We sought to investigate changes in LV dimensional parameters after mitral valve surgery and find out whether the same changes occurred in different extents of myocardial fibrosis.
Methods: This prospective observational study comprised 43 patients with rheumatic MS planned for mitral valve surgery between October 2017 and April 2018 in National Cardiovascular Center Harapan Kita (NCCHK) Jakarta. All the patients underwent cardiac magnetic resonance imaging based on the late gadolinium enhancement (LGE) protocol for myocardial fibrosis assessment prior to surgery. The patients were classified according to the estimated fibrosis volume considered to influence hemodynamic performance (myocardial fibrosis <5% and myocardial fibrosis ≥5%). Serial transthoracic echocardiographic examinations before and after surgery were performed to detect changes in LV dimensional parameters.
Results: This study consisted of 31 (72.1%) women and 12 (27.9%) men at a mean age of 46±9 years. The LGE protocol revealed myocardial fibrosis of less than 5% in 32 (74.4%) patients. A significant increase was detected in the LV end-diastolic diameter postoperatively, specifically in the patients with myocardial fibrosis of less than 5% (44.0±4.8 mm vs 46.6±5.6 mm; P value=0.027). A similar significant increase was not found in the other group (45.0±6.6 mm vs 46.7±6.9 mm; P value=0.256). Other changes in echocardiographic parameters showed similar patterns in both groups.
Conclusion: Our patients with rheumatic MS who had myocardial fibrosis of less than 5% demonstrated better improvements in terms of increased preload. Myocardial fibrosis of less than 5% is associated with more favorable improvements in LV geometry.

1. Bhaya M, Panwar S, Beniwal R, Panwar RB. High prevalence of rheumatic heart disease detected by echocardiography in school children. Echocardiography 2010;27:448-453.
2. Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, Paquet C, Jacob S, Sidi D, Jouven X. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med 2007;357:470-476.
3. Lung B. Mitral stenosis still a concern in heart valve disease. Arch Cardiovasc Dis 2008;101:597-599.
4. Saraiva LR, Carneiro RW, Arruda MB, Brindeiro D, Lira V. Mitral valve disease with rheumatic appearance in the presence of left ventricular endomyocardial fibrosis. Arq Bras Cardiol 1999;72:330-332.
5. Perennec J, Herreman F, Ameur A, Degeorges M, Hatt PY. Ultrastructural and histological study of left ventricular myocardium in mitral stenosis. Basic Res Cardiol 1980;75:353-364.
6. Choi EY, Yoon SJ, Lim SH, Choi BW, Ha JW, Shin DH, Chung N. Detection of myocardial involvement of rheumatic heart disease with contrast-enhanced magnetic resonance imaging. Int J Cardiol 2006;113:36-38.
7. Wedum B, McGuire J. Origin of the aschoff body. Ann rheum Dis 1963;22:127-141.
8. Horwitz L, Mullins C, Payne R, Curry G. Left ventricular function in mitral stenosis. Chest 1973;64:609-614.
9. Lee Y, Lee C. Ultrastructural pathological study of left ventricular myocardium in patients with isolated rheumatic mitral stenosis with normal or abnormal left ventricular function. Jpn heart J 1990;31:435-448.
10. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011;57:891-903.
11. Chaikringkrai K, Lopez-Mattei J, Lawrie G, Ibrahim H, Quinones MA, Zoghbi W, Little SH, Shah DJ. Prognostic value of delayed enhancement cardiac magnetic resonance imaging in mitral valve repair. Ann Thorac Surg 2014;9:1557-1563.
12. Kancharla K, Weissman G, Elagha A, Kancherla K, Samineni S, Hill PC, Boyce S, Fuisz AR. Scar quantification by cardiovascular magnetic resonance as an independent predictor of long-term survival in patients with ischemic heart failure treated by coronary artery bypass graft surgery. J Cardiovasc Magn Reson 2016;18:1-9.
13. Barone-Rochette G, Pierard S, DeMeester de Ravenstein C, Seldrum S, Melchior J, Maes F, Pouleur AC, Vancraeynest D, Pasquet A, Vanoverschelde JL, Gerber BL. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 2014;64:144-154.
14. Putra TMH, Sukmawan R, Elen E, Atmadikoesoemah CA, Desandri DR, Kasim M. Prognostic value of late gadolinium enhancement in postoperative morbidity following mitral valve surgery in rheumatic mitral stenosis. Int J Angiol 2019;28:237-244.
15. Sengupta SP, Amaki M, Bansal M, Fulwani M, Washimkar S, Hofstra L, Narula J, Sengupta PP. Effects of percutaneous balloon mitral valvuloplasty on left ventricular deformation in patients with isolated severe mitral stenosis: a speckle-tracking strain echocardiographic study. J Am Soc Echocardiogr 2014;27:639-647.
16. Parvathy UT, Rajan R, Faybushevich G. Reversal of abnormal cardiac parameters following mitral valve replacement for severe mitral stenosis in relation to pulmonary artery pressure: a retrospective study of noninvasive parameters – early and late pattern. Interv Med Appl Sci 2016;8:49-59.
17. Park J, Chang HJ, Choi JH, Yang PS, Lee SE, Heo R, Shin S, Cho IJ, Kim YJ, Shim CY, Hong GR, Chung N. Late gadolinium enhancement in cardiac MRI in patients with severe aortic stenosis and preserved left ventricular systolic function is related to attenuated improvement of left ventricular geometry and filling pressure after aortic valve replacement. Korean Circ J 2014;44:312-319.
18. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Sherman S, Thavendiranathan P, Thomas JD, Weissman NJ. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 2017;30:303-371.
19. Baumgartner HC, Hung JC, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, Lancellotti P, LeFevre M, Miler F, Jr, Otto CM. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 2017;18:254-275.
20. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Associaton of Cardiovascular Imaging. Eur Heart J 2015;16:233-271.
21. Parasuraman S, Walker S, Loudon BL, Gollop ND, Wilson AM, Lowery C, Frennaux MP. Assessment of pulmonary artery pressure by echocardiography – a comprehensive review. Int J Cardiol Heart Vasc 2016;12:45-51.
22. Mikami Y, Kolman L, Joncas SX, Stirrat J, Scholl D, Rajchl M, Lydell CP, Weeks SG, Howarth AG, White JA. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2014;16:1-9.
23. Flett A, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 2011;4:150-156.
24. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, Tarasoutchi F, Grinberg M, Rochitte CE. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol 2010;56:278-287.
25. Ismail TF, Jabbour A, Gulati A, Mallorie A, Raza S, Cowling TE, Das B, Khwaja J, Alpendurada FD, Wage R, Roughton M, McKenna WJ, Moon JC, Varnava A, Shakespeare C, Cowie MR, Cook SA, Elliott P, O’Hanlon R, Pennell DJ, Prasad SK. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart 2014;100:1851-1888.
26. Park CH, Chung H, Kim Y, Kim JY, Min PK, Lee KA, Yoon YW, Kim TH, Lee BK, Hong BK, Rim SJ, Kwon HM, Choi EY. Electrocardiography based prediction of hypertrophy pattern and fibrosis amount in hypertrophic cardiomyopathy: comparative study with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2018;34:1619-1628.
27. Shaper AG, Hutt MSR, Coles RM. Necropsy study of endomyocardial fibrosis and rheumatic heart disease in Uganda 1950-1965. Brit Heart J 1968;30:391-401.
28. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, Petrou M, Pennell DJ. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004;43:2260-2264.
29. Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol 2014;33:314-329.
30. Therkelsen SK, Groenning BA, Svendsen JH, Jensen GB. Atrial and ventricular volume and function in persistent and permanent atrial fibrillation, a magnetic resonance imaging study. J Cardiovasc Magn Reson 2005;7:465-473.
31. Hundley WG, Meshack BM, Willett DL, Sayad DE, Lange RA, Willard JE, Landau C, Hills LD, Peshock RM. Comparison of quantification of left ventricular volume, ejection fraction, and cardiac output in patients with atrial fibrillation by cine magnetic resonance imaging versus invasive measurements. Am J Cardiol 1996;78:1119-1123.
32. Hyllen S, Nozohoor S, Ingvarsson A, Meurling C, Wierup P, Sjogren J. Right ventricular performance after valve repair for chronic degenerative mitral regurgitation. Ann Thorac Surg 2014;98:2023-2030.
33. Nguyen T, Cao L, Mohaved A. Altered right ventricular contractile pattern after cardiac surgery: monitoring of septal function is essential. Echocardiography 2014;31:1159-1165.
34. Singh A, Huang X, Dai L, Wyler D, Alfirevic A, Blackstone EH, Pettersson GB, Duncan AE. Right ventricular function is reduced during cardiac surgery independent of procedural chara cteristics, reoperative status, or pericardiotomy. J Thorac Cardiovasc Surg 2019;159:1430-1438.
35. Ragnarsson S, Sjogren J, Stagmo M, Wierup P, Nozohoor S. Late right ventricular performance after mitral valve repair assessed by exercise echocardiography. Gen Thorac Cardiovasc Surg 2018;66:398-404.
36. Samet P, Litwak RS, Bernstein WH, Fierer EM, Silverman LM. Clinical and physiologic relationships in mitral valve disease. Circulation 1959;19:517-530.
37. Soesanto AM, Desandri DR, Haykal TM, Kasim M. Association between late gadolinium enhancement and global longitudinal strain in patients with rheumatic mitral stenosis. Int J Cardiovasc Imaging 2019;35:781-789.
38. Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, Raman SV. Influence of myocardial fibrosis on left ventricular diastolic function: non-invasive assessment by CMR and ECHO. Circ Cardiovasc Imaging 2009;2:437-443.
Files
IssueVol 15 No 3 (2020): J Teh Univ Heart Ctr QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/jthc.v15i3.4222
Keywords
Endomyocardial fibrosis Mitral valve stenosis Rheumatic heart disease

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Putra TMH, Sukmawan R, Desandri DR, Atmadikoesoemah C, Elen E, Kasim M. Left Ventricular Dimension after Mitral Valve Surgery in Rheumatic Mitral Stenosis: the Impact of Myocardial Fibrosis. J Tehran Heart Cent. 2020;15(3):119-127.