Original Article

Comparison of the Effects of Rosmarinic Acid and Electromagnetic Radiation-Induced Cardiotoxicity on Rats

Abstract

Background: Electromagnetic radiation (EMR) causes stable aggregation of reactive oxygen species (ROS), producing oxidative stress. Rosmarinic acid (RA), a plant-origin antioxidant, has been proposed against the side effects of cell phone and ultrahigh-frequency waves.
Methods: Forty-two male Wistar rats were randomly divided into 6 groups. Group 1 (controls) received 5 mL of normal saline with the gavage method, Group 2 received 915 MHz radiation, Group 3 received 2450 MHz radiation, Group 4 received RA plus 915 MHz radiation, Group 5 received RA plus 2450MHz radiation, and Group 6 received oral RA (5 mg/kg). Treatment and radiation (1 hour per day) continued for up to 30 days.
Results: EMR significantly reduced the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), the content of glutathione (GSH), and the level of total antioxidant capacity (TAC) and significantly increased oxidative stress indices, such as the levels of malondialdehyde (MDA) and nitric oxide (NO), and the content of protein carbonyl (PC). In contrast, RA significantly elevated TAC level (all groups), GSH content (the RA/cell phone radiation group), GPx activity (the RA/ultrahigh-frequency radiation group), SOD activity (all groups), and CAT activity (RA/ultrahigh-frequency radiation group) and conversely reduced MDA level (all groups), NO level (all groups), and PC content (all groups) in the RA/cell phone and RA/ultrahigh-frequency radiation groups compared with the NS/cell phone and NS/ultrahigh-frequency radiation groups, respectively. The administration of RA resulted in a significant reversal of cardiac markers in EMR-intoxicated rats.
Conclusion: RA treatment showed a significant protective effect against EMR-induced cardiotoxicity.

1. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013;51:15-25.
2. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009;70:1663-1679.
3. De Oliveira NC, Sarmento MS, Nunes EA, Porto CM, Rosa DP, Bona SR, Rodrigues G, Marroni NP, Pereira P, Picada JN, Ferraz AB, Thiesen FV, Da Silva J. Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem Toxicol 2012;50:1208-1214.
4. Anusuya C, Manoharan S. Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J Environ Pathol Toxicol Oncol 2011;30:199-211.
5. Moreno S, Scheyer T, Romano CS, Vojnov AA. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 2006;40:223-231.
6. Lee HJ, Cho HS, Park E, Kim S, Lee SY, Kim CS, Kim DK, Kim SJ, Chun HS. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology 2008;250:109-115.
7. Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biofactors 2004;21:127-131.
8. Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, Fialova S, Krenek P. Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol 2013;65:713-723.
9. Al-Dhabi NA, Arasu MV, Park CH, Park SU. Recent studies on rosmarinic acid and its biological and pharmacological activities. EXCLI J 2014;13:1192-115.
10. Hajhosseini L, Khaki A, Merat E, Ainehchi N. Effect of rosmarinic acid on sertoli cells apoptosis and serum antioxidant levels in rats after exposure to electromagnetic fields. Afr J Tradit Complement Altern Med 2013;10:477-480.
11. Mushtaq N, Schmatz R, Pereira LB, Ahmad M, Stefanello N, Vieira JM, Abdalla F, Rodrigues MV, Baldissarelli J, Pelinson LP, Dalenogare DP, Reichert KP, Dutra EM, Mulinacci N, Innocenti M, Bellumori M, Morsch VM, Schetinger MR. Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats. Cell Biochem Funct 2014;32:287-293.
12. Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, Najafzadehvarzi H, Mehrzadi S. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019;41:419-428.
13. Mehrzadi S, Fatemi I, Malayeri AR, Khodadadi A, Mohammadi F, Mansouri E, Rashno M, Goudarzi M. Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol Rep 2018;70:712-719.
14. Martin JP Jr, Dailey M, Sugarman E. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 1987;255:329-336.
15. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121-126.
16. ELLMAN GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-77.
17. Tracey WR, Linden J, Peach MJ, Johns RA. Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther 1990;252:922-928.
18. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 1994;233:346-357.
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
20. Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 2002;20:279-283.
21. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007;100:460-473.
22. Klebanov GI, Teselkin YuO, Babenkova IV, Lyubitsky OB, Rebrova OYu, Boldyrev AA, Vladimirov YuA. Effect of carnosine and its components on free-radical reactions. Membr Cell Biol 1998;12:89-99.
23. Burcham PC, Kaminskas LM, Fontaine FR, Petersen DR, Pyke SM. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products. Toxicology 2002;181-182:229-236.
24. Esmekaya MA, Ozer C, Seyhan N. 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen Physiol Biophys 2011;30:84-89.
25. Sharma M, Kishore K, Gupta SK, Joshi S, Arya DS. Cardioprotective potential of ocimum sanctum in isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 2001;225:75-83.
26. Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell 2011;43:392-397.
27. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003;66:1499-503.
28. Nagy G, Ward J, Mosser DD, Koncz A, Gergely P Jr, Stancato C, Qian Y, Fernandez D, Niland B, Grossman CE, Telarico T, Banki K, Perl A. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J Biol Chem 2006;281:34574-3491.
29. Cooke JP, Tsao PS. Cytoprotective effects of nitric oxide. Circulation 1993;88(5 Pt 1):2451-2454.
30. Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol 2004;61:377-383.
31. Navarro A. Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med 2004;25:37-48.
32. Shahin S, Singh VP, Shukla RK, Dhawan A, Gangwar RK, Singh SP, Chaturvedi CM. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus. Appl Biochem Biotechnol 2013;169:1727-1751.
33. Salah MB, Abdelmelek H, Abderraba M. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol 2013;36:826-834.
34. Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, Gumustas K, Seker S. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med 2006;25:177-188.
35. Sharifian A, Gharavi M, Pasalar P, Aminian O. Effect of extremely low frequency magnetic field on antioxidant activity in plasma and red blood cells in spot welders. Int Arch Occup Environ Health 2009;82:259-266.
36. Ozguner F, Armagan A, Koyu A, Caliskan S, Koylu H. A novel antioxidant agent caffeic acid phenethyl ester prevents shock wave-induced renal tubular oxidative stress. Urol Res 2005;33:239-243.
37. Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 2001;26:605-608.
38. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 2005;36:350-355.
39. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta 2004;340:153-162.
40. Stopczyk D, Gnitecki W, Buczyński A, Kowalski W, Buczyńska M, Kroc A. Zmiany aktywności dysmutazy ponadtlenkowej (SOD-1) w krwinkach płytkowych poddanych działaniu promieniowania elektromagnetycznego wysokiej czestotliwości--badania in vitro [Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1)--in vitro researches]. Ann Acad Med Stetin 2005;51 Suppl 1:125-128.
41. Stopczyk D, Gnitecki W, Buczyński A, Markuszewski L, Buczyński J. Zmiany aktywności dyzmutazy ponadtlenkowej (SOD-1) oraz stezenia dialdehydu malonowego w krwinkach płytkowych poddanych działaniu promieniowania elektromagnetycznego wysokiej czestotliwości generowanego przez telefon komórkowy--badania in vitro [Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1) and the level of malonyldialdehyde (MDA)--in vitro study]. Med Pr 2002;53:311-314.
42. Zhang Y, Chen X, Yang L, Zu Y, Lu Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct 2015;6:927-931.
43. Fernando PM, Piao MJ, Kang KA, Ryu YS, Hewage SR, Chae SW, Hyun JW. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol Ther (Seoul) 2016;24:75-84.
44. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 2002;23:983-991.
45. Park JA, Kim S, Lee SY, Kim CS, Kim DK, Kim SJ, Chun HS. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. Neuroreport 2008;19:1301-1304.
46. Yüksel M, Nazıroğlu M, Özkaya MO. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine 2016;52:352-362.
47. Özorak A, Nazıroğlu M, Çelik Ö, Yüksel M, Özçelik D, Özkaya MO, Çetin H, Kahya MC, Kose SA. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res 2013;156:221-229.
48. Alagawany M, Abd El-Hack ME, Farag MR, Gopi M, Karthik K, Malik YS, Dhama K. Rosmarinic acid: modes of action, medicinal values and health benefits. Anim Health Res Rev 2017;18:167-176.
49. Vostálová J, Zdarilová A, Svobodová A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res 2010;302:171-181.
50. Adomako-Bonsu AG, Chan SL, Pratten M, Fry JR. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol In Vitro 2017;40:248-255.
51. Fadel O, El Kirat K, Morandat S. The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochim Biophys Acta 2011;1808:2973-2980.
52. Gil Ede S, Enache TA, Oliveira-Brett AM. Redox behaviour of verbascoside and rosmarinic acid. Comb Chem High Throughput Screen 2013;16:92-97.
Files
IssueVol 18 No 3 (2023): J Teh Univ Heart Ctr QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/jthc.v18i3.14115
Keywords
Rosmarinic acid Heart Oxidative stress Rats Ultrahigh-frequency wave Cell phone

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Goudarzi M, Fatahi Asl J, Shoghi H. Comparison of the Effects of Rosmarinic Acid and Electromagnetic Radiation-Induced Cardiotoxicity on Rats. J Tehran Heart Cent. 2023;18(3):207-213.