Original Article

Conditioned Medium from Human Amniotic Membrane-Derived Mesenchymal Stem Cells Modulates Inflammatory and Myofibrotic Factors in Vivo

Abstract

Background: Heart failure (HF) is a prevalent diagnosis with a significant mortality rate. Various therapeutic approaches exist for treating HF, and human adipose-derived mesenchymal stem cells-conditioned medium (hAMSCs-CM) therapy has emerged as a promising option. Despite its potential efficacy, the precise mechanism of action underlying hAMSCs-CM treatment remains unclear. To address this knowledge gap, we conducted a novel animal study to investigate the mechanism of action of hAMSCs-CM in an HF model, with a specific focus on transforming growth factor-β (TGF-β)/galectin-3, monocyte chemoattractant protein-1 (MCP1), B-type natriuretic peptide (BNP), and aldosterone (ALD).
Methods: Forty adult male Wistar rats were divided into 4 groups: control, HF, culture medium, and CM. All rats, except those in the control group, received an injection of isoproterenol to induce an animal model of HF. The CM group was administered the CM, while those in the culture medium group received standard culture media. Subsequently, serum levels of fibrotic factors, including TGF-β/galectin-3, MCP1, BNP, and ALD, were measured using ELISA. Statistical analysis was performed using one-way analysis of variance and the Tukey test.
Results: Serum levels of TGF-β/galectin-3, MCP1, BNP, and ALD were significantly elevated in the HF, CM, and culture medium groups compared with the control group (P<0.001). Additionally, these fibrotic factors were significantly reduced in the CM group compared with the HF group (P<0.001). Notably, CM therapy could not restore TGF-β/galectin-3, MCP1, BNP, or ALD levels to the normal range observed in the control group.
Conclusion: Our findings indicate that hAMSCs-CM modulates the expression of inflammatory and fibrotic cytokines, such as TGF-β/galectin-3, MCP1, BNP, and ALD, in isoproterenol-induced HF in male rats. These results contribute to a better understanding of the therapeutic mechanisms underlying hAMSCs-CM treatment for HF.

1. Daltro PS, Barreto BC, Silva PG, Neto PC, Sousa Filho PHF, Santana Neta D, Carvalho GB, Silva DN, Paredes BD, de Alcantara AC, Freitas LAR, Couto RD, Santos RR, Souza BSF, Soares MBP, Macambira SG. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy 2017;19:1176-1188.
2. Hassannejad R, Shafie D, Turk-Adawi KI, Hajaj AM, Mehrabani-Zeinabad K, Lui M, et al. (2023) Changes in the burden and underlying causes of heart failure in the Eastern Mediterranean Region, 1990–2019: An analysis of the Global Burden of Disease Study 2019. Eclinicalmedicine;56:101788.
3. Roger VL. Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res 2021;128:1421-1434.
4. Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY, Zong J, Dai J, Tang QZ. Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Histol 2013;44:357-67.
5. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011;51:600-606.
6. Cinato M, Guitou L, Saidi A, Timotin A, Sperazza E, Duparc T, Zolov SN, Giridharan SSP, Weisman LS, Martinez LO, Roncalli J, Kunduzova O, Tronchere H, Boal F. Apilimod alters TGFβ signaling pathway and prevents cardiac fibrotic remodeling. Theranostics 2021;11:6491-6506.
7. Frunza O, Russo I, Saxena A, Shinde AV, Humeres C, Hanif W, Rai V, Su Y, Frangogiannis NG. Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis. Am J Pathol 2016;186:1114-1127.
8. Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B. Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther. 2021 Jul 16;12(1):409. doi: 10.1186/s13287-021-02429-z. Retraction in: Stem Cell Res Ther 2024;15:52.
9. Wang L, Friess H, Zhu Z, Frigeri L, Zimmermann A, Korc M, Berberat PO, Büchler MW. Galectin-1 and galectin-3 in chronic pancreatitis. Lab Invest 2000;80:1233-1241.
10. Martínez-Martínez E, Calvier L, Fernández-Celis A, Rousseau E, Jurado-López R, Rossoni LV, Jaisser F, Zannad F, Rossignol P, Cachofeiro V, López-Andrés N. Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 2015;66:767-775.
11. Blanco-Colio LM, Méndez-Barbero N, Pello Lázaro AM, Aceña Á, Tarín N, Cristóbal C, Martínez-Milla J, González-Lorenzo Ó, Martín-Ventura JL, Huelmos A, Gutiérrez-Landaluce C, López-Castillo M, Kallmeyer A, Cánovas E, Alonso J, López Bescós L, Egido J, Lorenzo Ó, Tuñón J. MCP-1 Predicts Recurrent Cardiovascular Events in Patients with Persistent Inflammation. J Clin Med 2021;10:1137.
12. Goetze JP, Bruneau BG, Ramos HR, Ogawa T, de Bold MK, de Bold AJ. Cardiac natriuretic peptides. Nat Rev Cardiol 2020;17:698-717.
13. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, Poirier F, Lacolley P, Zannad F, Rossignol P, López-Andrés N. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 2013;33:67-75.
14. Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, Pothacharoen P, Puaninta C. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte‑like cells. Mol Med Rep 2017;16:6068-6076.
15. Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Adipose tissue-derived stromal cells' conditioned medium modulates endothelial-mesenchymal transition induced by IL-1β/TGF-β2 but does not restore endothelial function. Cell Prolif 2019;52:e12629.
16. Chen TJ, Yeh YT, Peng FS, Li AH, Wu SC. S100A8/A9 Enhances Immunomodulatory and Tissue-Repairing Properties of Human Amniotic Mesenchymal Stem Cells in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2021;22:11175.
17. Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021;22:510.
18. Naseroleslami M, Parivar K, Khoei S, Aboutaleb N. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles. Cell J 2016;18:332-9.
19. Zeng Z, Xu L, Xu Y, Ruan Y, Liu D, Li J, Niu C, Zheng S, Zhou P, Xiao Z. Normothermic Ex Vivo Heart Perfusion with Mesenchymal Stem Cell-Derived Conditioned Medium Improves Myocardial Tissue Protection in Rat Donation after Circulatory Death Hearts. Stem Cells Int 2022;2022:8513812.
20. Nasseri Maleki S, Aboutaleb N, Nazarinia D, Allahverdi Beik S, Qolamian A, Nobakht M. Conditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats. Iran J Basic Med Sci 2019;22:1253-1258.
21. Naseroleslami M, Aboutaleb N. Human amniotic membrane mesenchymal stem cells exert cardioprotective effects against isoproterenol (ISO)-induced myocardial injury through suppression of inflammation and modulation of inflammatory MAPK/NF-κB pathway. Cell Tissue Bank 2022;23:67-77.
22. Kheila M, Gorjipour F, Hosseini Gohari L, Sharifi M, Aboutaleb N. Human mesenchymal stem cells derived from amniotic membrane attenuate isoproterenol (ISO)-induced myocardial injury by targeting apoptosis. Med J Islam Repub Iran 2021;35:82.
23. Lee AJ, Mahoney CM, Cai CC, Ichinose R, Stefani RM, Marra KG, Ateshian GA, Shah RP, Vunjak-Novakovic G, Hung CT. Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Eng Part A 2021;27:1411-1421.
24. Ouyang F, Liu X, Liu G, Qiu H, He Y, Hu H, Jiang P. Long non-coding RNA RNF7 promotes the cardiac fibrosis in rat model via miR-543/THBS1 axis and TGFβ1 activation. Aging (Albany NY) 2020;12:996-1010.
25. Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 2000;32:1805-1819.
26. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res 2008;58:88-111.
27. Naseroleslami M, Mousavi Niri N, Hosseinian SB, Aboutaleb N. DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol 2023;396:2127-2136.
28. Naseroleslami M, Aboutaleb N, Parivar K. The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure. Drug Deliv Transl Res 2018;8:1214-1225.
29. Huang QM, Long YL, Wang JN, Wu J, Tang WL, Wang XY, Zhang ZH, Zhuo YQ, Guan XH, Deng KY, Xin HB. Human amniotic MSCs-mediated anti-inflammation of CD206hiIL-10hi macrophages alleviates isoproterenol-induced ventricular remodeling in mice. Int Immunopharmacol 2024;129:111660.
30. Qian JF, Liang SQ, Wang QY, Xu JC, Luo W, Huang WJ, Wu GJ, Liang G. Isoproterenol induces MD2 activation by β-AR-cAMP-PKA-ROS signalling axis in cardiomyocytes and macrophages drives inflammatory heart failure. Acta Pharmacol Sin 2024;45:531-544.
31. Lin YH, Lin LY, Wu YW, Chien KL, Lee CM, Hsu RB, Chao CL, Wang SS, Hsein YC, Liao LC, Ho YL, Chen MF. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta 2009;409:96-99.
32. Chumakova S, Urazova O, Shipulin V, Vins M, Pryakhin A, Sukhodolo I, Stelmashenko A, Litvinova L, Kolobovnikova Y, Churina E, Novitskiy V. Galectin 3 and non-classical monocytes of blood as myocardial remodeling factors at ischemic cardiomyopathy. Int J Cardiol Heart Vasc 2021;33:100766.
33. Thandavarayan RA, Watanabe K, Ma M, Veeraveedu PT, Gurusamy N, Palaniyandi SS, Zhang S, Muslin AJ, Kodama M, Aizawa Y. 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy. Biochem Pharmacol 2008;75:1797-806.
34. Slawik J, Adrian L, Hohl M, Lothschütz S, Laufs U, Böhm M. Irregular pacing of ventricular cardiomyocytes induces pro-fibrotic signalling involving paracrine effects of transforming growth factor beta and connective tissue growth factor. Eur J Heart Fail 2019;21:482-491.
35. Blanco-Colio LM, Méndez-Barbero N, Pello Lázaro AM, Aceña Á, Tarín N, Cristóbal C, Martínez-Milla J, González-Lorenzo Ó, Martín-Ventura JL, Huelmos A, Gutiérrez-Landaluce C, López-Castillo M, Kallmeyer A, Cánovas E, Alonso J, López Bescós L, Egido J, Lorenzo Ó, Tuñón J. MCP-1 Predicts Recurrent Cardiovascular Events in Patients with Persistent Inflammation. J Clin Med 2021;10:1137.
36. Messaoudi S, Azibani F, Delcayre C, Jaisser F. Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol 2012;350:266-272.
37. Cha JH, Wee HJ, Seo JH, Ahn BJ, Park JH, Yang JM, Lee SW, Kim EH, Lee OH, Heo JH, Lee HJ, Gelman IH, Arai K, Lo EH, Kim KW. AKAP12 mediates barrier functions of fibrotic scars during CNS repair. PLoS One 2014;9:e94695.
38. Liao CW, Lin YT, Wu XM, Chang YY, Hung CS, Wu VC, Wu KD, Lin YH; TAIPAI Study Group. The relation among aldosterone, galectin-3, and myocardial fibrosis: a prospective clinical pilot follow-up study. J Investig Med 2016;64:1109-1113.
39. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. The Diagnostic and Therapeutic Potential of Galectin-3 in Cardiovascular Diseases. Biomolecules 2021;12:46.
40. Lin YH, Chou CH, Wu XM, Chang YY, Hung CS, Chen YH, Tzeng YL, Wu VC, Ho YL, Hsieh FJ, Wu KD; TAIPAI Study Group. Aldosterone induced galectin-3 secretion in vitro and in vivo: from cells to humans. PLoS One 2014;9:e95254.
Files
IssueVol 19 No 3 (2024): J Teh Univ Heart Ctr QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/jthc.v19i3.16863
Keywords
Mesenchymal stem cells Heart failure Inflammation Fibrosis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Asgharnezhad G, Mohammadi S, Mehrab Mohseni M, Mousvi-Niri N, Naseroleslami M. Conditioned Medium from Human Amniotic Membrane-Derived Mesenchymal Stem Cells Modulates Inflammatory and Myofibrotic Factors in Vivo. J Tehran Heart Cent. 2024;19(3):198-205.