Frontal T-P Angle: A Novel ECG Parameter for Predicting SYNTAX-1 and SYNTAX-2 Scores in Acute Non–ST-Segment Elevation Myocardial Infarction
Abstract
Background: Few studies have investigated P-wave and T-wave axes, most of which focus on mortality. The frontal T-P angle (fT-Pa) is a novel ECG-derived parameter of ventricular repolarization. We aimed to evaluate the association between fT-Pa and SYNTAX-1 (SS-1) and SYNTAX-2 (SS-2) scores in patients with acute non-ST-segment elevation myocardial infarction (ANSTEMI).
Methods: This retrospective study included 158 ANSTEMI patients undergoing coronary angiography. The study population was stratified based on SS-1 (≤22 vs. >22) and SS-2 (≤26.2 vs. >26.2). The fT-Pa was calculated by subtracting the P-wave axis from the T-wave axis, both obtained from the ECG device's built-in software, and compared between groups.
Results: fT-Pa showed significant correlations with age (r=0.242, P=0.003), SS-2 (r=0.229, P=0.005), and T-wave axis (r=–0.626, P<0.001). Both age and fT-Pa were significantly correlated with and predictive of SS-2 (β=0.679; OR, 0.700 [95% CI, 0.584 to 0.816]; P<0.001 for age) and (β=0.147; OR, 0.048 [95% CI, 0.012 to 0.085; P=0.010 for fT-Pa). ROC curve analysis identified an fT-Pa cutoff of 36.5 (64% sensitivity, 68% specificity; AUC, 0.674; P<0.001) for predicting SS-2 > 26.2, and a cutoff of 39.5 (70% sensitivity, 62% specificity; AUC, 0.692; P=0.010) for predicting SS-1>22.
Conclusions: fT-Pa showed a stronger correlation and association with SS-2 than with SS-1. This parameter may serve as a simple, reproducible tool for predicting coronary artery disease complexity, even in patients with normal T-wave and P-wave axis ranges.
2. Erdogan G, Yontar OC, Yenercag M, Gul S, rslan U. Frontal QRS-T angle predicts syntax score in patients with non-ST elevation myocardial infarction. J Electrocardiol. 2020;61:86-91.
3. Helmy H, Abdel-Galeel A, Taha Kishk Y, Mohammed Sleem K. Correlation of corrected QT dispersion with the severity of coronary artery disease detected by SYNTAX score in non-diabetic patients with STEMI. Egypt Heart J. 2017;69(2):111-7.
4. Vaidean GD, Rautaharju PM, Prineas RJ, Whitsel EA, Chambless LE, Folsom AR, et al. The association of spatial T wave axis deviation with incident coronary events. The ARIC cohort. BMC Cardiovasc Disord. 2005;5(1):2.
5. Iacoviello L, Bonaccio M, Di Castelnuovo A, Costanzo S, Rago L, De Curtis A, et al. Frontal plane T-wave axis orientation predicts coronary events: Findings from the Moli-sani study. Atherosclerosis. 2017;264:51-7.
6. Scherer ML, Aspelund T, Sigurdsson S, Detrano , Garcia M, Mitchell GF, et al. Abnormal T-wave axis is associated with coronary artery calcification in older adults. Scand Cardiovasc J. 2009;43(4):240-8.
7. Kors JA, de Bruyne MC, Hoes AW, van Herpen , Hofman A, van Bemmel JH, et al. T axis as an indicator of risk of cardiac events in elderly people. Lancet. 1998;352(9128):601-5.
8. Dilaveris P, Antoniou CK, Gatzoulis K, Tousoulis. T wave axis deviation and QRS-T angle - Controversial indicators of incident coronary heart events. J Electrocardiol. 2017;50(4):466-75.
9. Alagiakrishnan K, Beitel JD, Graham MM, Southern D, Knudtson M, Ghali WA, et al. Relation of T-axis abnormalities to coronary artery disease and survival after cardiac catheterization. Am J Cardiol. 2005;96(5):639-42.
10. Li Y, Shah AJ, Soliman EZ. Effect of electrocardiographic P-wave axis on mortality. Am J Cardiol. 2014;113(2):372-6.
11. Almuwaqqat Z, O'Neal WT, Hammadah M, Lima BB, Bremner JD, Soliman EZ, et al. Abnormal P wave axis and myocardial ischemia development during mental stress. J Electrocardiol. 2020;60:3-7.
12. Rangel MO, O'Neal WT, Soliman EZ. Usefulness of the Electrocardiographic P-Wave Axis as a Predictor of Atrial Fibrillation. Am J Cardiol. 2016;117(1):100-4.
13. Lazzeroni D, Bini M, Camaiora U, Castiglioni P, Moderato L, Ugolotti PT, et al. Predictive role of P- wave axis abnormalities in secondary cardiovascular prevention. Eur J Prev Cardiol. 2017;24(18):1994-9.
14. Yang H, Zhang L, Xu CH. Use of the SYNTAX Score II to predict mortality in interventional cardiology: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98(2):e14043.
15. Magro M, Nauta S, Simsek C, Onuma Y, Garg S, van der Heide E, et al. Value of the SYNTAX score in patients treated by primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: The MI SYNTAXscore study. Am Heart J. 2011;161(4):771-81.
16. Wang G, Wang C, Zhang Y, Wang P, Ran C, Zhao L, et al. Usefulness of the SYNTAX score II to predict 1-year outcome in patients with primary percutaneous coronary intervention. Coron Artery Dis. 2016;27(6):483-9.
17. Campos CM, van Klaveren D, Farooq V, Simonton CA, Kappetein AP, Sabik JF, 3rd, et al. Long-term forecasting and comparison of mortality in the Evaluation of the Xience Everolimus Eluting Stent vs. Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization (EXCEL) trial: prospective validation of the SYNTAX Score II. Eur Heart J. 015;36(20):1231-41.
18. Dilaveris P, Gialafos E, Poloniecki J, Hnatkova K, Richter D, Andrikopoulos G, et al. Changes of the T-wave amplitude and angle: an early marker of altered ventricular repolarization in hypertension. Clin Cardiol. 2000;23(8):600-6.
19. Assanelli D, Rago L, Salvetti M, Di Castelnuovo A, Badilini F, Vaglio M, et al. T-wave axis deviation, metabolic syndrome and cardiovascular risk: results from the MOLI-SANI study. J Electrocardiol. 2012;45(6):546-50.
20. Rautaharju PM, Nelson JC, Kronmal RA, Zhang ZM, Robbins J, Gottdiener JS, et al. Usefulness of T-axis deviation as an independent risk indicator for incident cardiac events in older men and women free from coronary heart disease (the Cardiovascular Health Study). Am J Cardiol. 2001;88(2):118-23.
21. O'Neal WT, Zhang ZM, Loehr LR, Chen LY, Alonso A, Soliman EZ. Electrocardiographic Advanced Interatrial Block and Atrial Fibrillation Risk in the General Population. Am J Cardiol. 2016;117(11):1755-9.
22. Maheshwari A, Norby FL, Soliman EZ, Koene R, Rooney M, O'Neal WT, et al. Refining Prediction of Atrial Fibrillation Risk in the General Population With Analysis of P-Wave Axis (from the Atherosclerosis Risk in Communities Study). Am J Cardiol. 2017;120(11):1980-4.
23. Fernandes RM, Le Bihan D, Vilela AA, Barretto RBM, Santos ES, Assef JE, et al. Association between left atrial strain and left ventricular diastolic function in patients with acute coronary syndrome. J Echocardiogr. 2019;17(3):138-46.
24. Richardson-Lobbedez M, Maréchaux S, Bauters C, Darchis J, Auffray JL, Bauchart JJ, et al. Prognostic importance of tissue Doppler-derived diastolic function in patients presenting with acute coronary syndrome: a bedside echocardiographic study. Eur J Echocardiogr. 2008;9(5):594-8.
25. Azarisman SM, Teo KS, Worthley MI, Worthley SG. Cardiac magnetic resonance assessment of diastolic dysfunction in acute coronary syndrome. J Int Med Res. 2017;45(6):1680-92.
26. Koc F, Koc S, Yuksek J, Vatankulu MA, Ozbek K, Gul EE, et al. Is diastolic dysfunction associated with atrial electrocardiographic parameters in Behçet's disease? Acta Cardiol. 2011;66(5):607-12.
27. Hsiao SH, Lin KL, Chiou KR. Comparison of left atrial volume parameters in detecting left ventricular diastolic dysfunction versus tissue Doppler recordings. Am J Cardiol. 2012;109(5):748-55
Files | ||
Issue | Vol 20 No 1 (2025) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/jthc.v20i1.19219 | |
Keywords | ||
frontal T-P angle T-wave axis P-wave axis acute coronary syndrome |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |